Cargando…

Ancient human sialic acid variant restricts an emerging zoonotic malaria parasite

Plasmodium knowlesi is a zoonotic parasite transmitted from macaques causing malaria in humans in Southeast Asia. Plasmodium parasites bind to red blood cell (RBC) surface receptors, many of which are sialylated. While macaques synthesize the sialic acid variant N-glycolylneuraminic acid (Neu5Gc), h...

Descripción completa

Detalles Bibliográficos
Autores principales: Dankwa, Selasi, Lim, Caeul, Bei, Amy K., Jiang, Rays H. Y., Abshire, James R., Patel, Saurabh D., Goldberg, Jonathan M., Moreno, Yovany, Kono, Maya, Niles, Jacquin C., Duraisingh, Manoj T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4822025/
https://www.ncbi.nlm.nih.gov/pubmed/27041489
http://dx.doi.org/10.1038/ncomms11187
_version_ 1782425691533344768
author Dankwa, Selasi
Lim, Caeul
Bei, Amy K.
Jiang, Rays H. Y.
Abshire, James R.
Patel, Saurabh D.
Goldberg, Jonathan M.
Moreno, Yovany
Kono, Maya
Niles, Jacquin C.
Duraisingh, Manoj T.
author_facet Dankwa, Selasi
Lim, Caeul
Bei, Amy K.
Jiang, Rays H. Y.
Abshire, James R.
Patel, Saurabh D.
Goldberg, Jonathan M.
Moreno, Yovany
Kono, Maya
Niles, Jacquin C.
Duraisingh, Manoj T.
author_sort Dankwa, Selasi
collection PubMed
description Plasmodium knowlesi is a zoonotic parasite transmitted from macaques causing malaria in humans in Southeast Asia. Plasmodium parasites bind to red blood cell (RBC) surface receptors, many of which are sialylated. While macaques synthesize the sialic acid variant N-glycolylneuraminic acid (Neu5Gc), humans cannot because of a mutation in the enzyme CMAH that converts N-acetylneuraminic acid (Neu5Ac) to Neu5Gc. Here we reconstitute CMAH in human RBCs for the reintroduction of Neu5Gc, which results in enhancement of P. knowlesi invasion. We show that two P. knowlesi invasion ligands, PkDBPβ and PkDBPγ, bind specifically to Neu5Gc-containing receptors. A human-adapted P. knowlesi line invades human RBCs independently of Neu5Gc, with duplication of the sialic acid-independent invasion ligand, PkDBPα and loss of PkDBPγ. Our results suggest that absence of Neu5Gc on human RBCs limits P. knowlesi invasion, but that parasites may evolve to invade human RBCs through the use of sialic acid-independent pathways.
format Online
Article
Text
id pubmed-4822025
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-48220252016-04-17 Ancient human sialic acid variant restricts an emerging zoonotic malaria parasite Dankwa, Selasi Lim, Caeul Bei, Amy K. Jiang, Rays H. Y. Abshire, James R. Patel, Saurabh D. Goldberg, Jonathan M. Moreno, Yovany Kono, Maya Niles, Jacquin C. Duraisingh, Manoj T. Nat Commun Article Plasmodium knowlesi is a zoonotic parasite transmitted from macaques causing malaria in humans in Southeast Asia. Plasmodium parasites bind to red blood cell (RBC) surface receptors, many of which are sialylated. While macaques synthesize the sialic acid variant N-glycolylneuraminic acid (Neu5Gc), humans cannot because of a mutation in the enzyme CMAH that converts N-acetylneuraminic acid (Neu5Ac) to Neu5Gc. Here we reconstitute CMAH in human RBCs for the reintroduction of Neu5Gc, which results in enhancement of P. knowlesi invasion. We show that two P. knowlesi invasion ligands, PkDBPβ and PkDBPγ, bind specifically to Neu5Gc-containing receptors. A human-adapted P. knowlesi line invades human RBCs independently of Neu5Gc, with duplication of the sialic acid-independent invasion ligand, PkDBPα and loss of PkDBPγ. Our results suggest that absence of Neu5Gc on human RBCs limits P. knowlesi invasion, but that parasites may evolve to invade human RBCs through the use of sialic acid-independent pathways. Nature Publishing Group 2016-04-04 /pmc/articles/PMC4822025/ /pubmed/27041489 http://dx.doi.org/10.1038/ncomms11187 Text en Copyright © 2016, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Dankwa, Selasi
Lim, Caeul
Bei, Amy K.
Jiang, Rays H. Y.
Abshire, James R.
Patel, Saurabh D.
Goldberg, Jonathan M.
Moreno, Yovany
Kono, Maya
Niles, Jacquin C.
Duraisingh, Manoj T.
Ancient human sialic acid variant restricts an emerging zoonotic malaria parasite
title Ancient human sialic acid variant restricts an emerging zoonotic malaria parasite
title_full Ancient human sialic acid variant restricts an emerging zoonotic malaria parasite
title_fullStr Ancient human sialic acid variant restricts an emerging zoonotic malaria parasite
title_full_unstemmed Ancient human sialic acid variant restricts an emerging zoonotic malaria parasite
title_short Ancient human sialic acid variant restricts an emerging zoonotic malaria parasite
title_sort ancient human sialic acid variant restricts an emerging zoonotic malaria parasite
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4822025/
https://www.ncbi.nlm.nih.gov/pubmed/27041489
http://dx.doi.org/10.1038/ncomms11187
work_keys_str_mv AT dankwaselasi ancienthumansialicacidvariantrestrictsanemergingzoonoticmalariaparasite
AT limcaeul ancienthumansialicacidvariantrestrictsanemergingzoonoticmalariaparasite
AT beiamyk ancienthumansialicacidvariantrestrictsanemergingzoonoticmalariaparasite
AT jiangrayshy ancienthumansialicacidvariantrestrictsanemergingzoonoticmalariaparasite
AT abshirejamesr ancienthumansialicacidvariantrestrictsanemergingzoonoticmalariaparasite
AT patelsaurabhd ancienthumansialicacidvariantrestrictsanemergingzoonoticmalariaparasite
AT goldbergjonathanm ancienthumansialicacidvariantrestrictsanemergingzoonoticmalariaparasite
AT morenoyovany ancienthumansialicacidvariantrestrictsanemergingzoonoticmalariaparasite
AT konomaya ancienthumansialicacidvariantrestrictsanemergingzoonoticmalariaparasite
AT nilesjacquinc ancienthumansialicacidvariantrestrictsanemergingzoonoticmalariaparasite
AT duraisinghmanojt ancienthumansialicacidvariantrestrictsanemergingzoonoticmalariaparasite