Cargando…
Combined Population Dynamics and Entropy Modelling Supports Patient Stratification in Chronic Myeloid Leukemia
Modelling the parameters of multistep carcinogenesis is key for a better understanding of cancer progression, biomarker identification and the design of individualized therapies. Using chronic myeloid leukemia (CML) as a paradigm for hierarchical disease evolution we show that combined population dy...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4822142/ https://www.ncbi.nlm.nih.gov/pubmed/27048866 http://dx.doi.org/10.1038/srep24057 |
_version_ | 1782425720683757568 |
---|---|
author | Brehme, Marc Koschmieder, Steffen Montazeri, Maryam Copland, Mhairi Oehler, Vivian G. Radich, Jerald P. Brümmendorf, Tim H. Schuppert, Andreas |
author_facet | Brehme, Marc Koschmieder, Steffen Montazeri, Maryam Copland, Mhairi Oehler, Vivian G. Radich, Jerald P. Brümmendorf, Tim H. Schuppert, Andreas |
author_sort | Brehme, Marc |
collection | PubMed |
description | Modelling the parameters of multistep carcinogenesis is key for a better understanding of cancer progression, biomarker identification and the design of individualized therapies. Using chronic myeloid leukemia (CML) as a paradigm for hierarchical disease evolution we show that combined population dynamic modelling and CML patient biopsy genomic analysis enables patient stratification at unprecedented resolution. Linking CD34(+) similarity as a disease progression marker to patient-derived gene expression entropy separated established CML progression stages and uncovered additional heterogeneity within disease stages. Importantly, our patient data informed model enables quantitative approximation of individual patients’ disease history within chronic phase (CP) and significantly separates “early” from “late” CP. Our findings provide a novel rationale for personalized and genome-informed disease progression risk assessment that is independent and complementary to conventional measures of CML disease burden and prognosis. |
format | Online Article Text |
id | pubmed-4822142 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-48221422016-04-18 Combined Population Dynamics and Entropy Modelling Supports Patient Stratification in Chronic Myeloid Leukemia Brehme, Marc Koschmieder, Steffen Montazeri, Maryam Copland, Mhairi Oehler, Vivian G. Radich, Jerald P. Brümmendorf, Tim H. Schuppert, Andreas Sci Rep Article Modelling the parameters of multistep carcinogenesis is key for a better understanding of cancer progression, biomarker identification and the design of individualized therapies. Using chronic myeloid leukemia (CML) as a paradigm for hierarchical disease evolution we show that combined population dynamic modelling and CML patient biopsy genomic analysis enables patient stratification at unprecedented resolution. Linking CD34(+) similarity as a disease progression marker to patient-derived gene expression entropy separated established CML progression stages and uncovered additional heterogeneity within disease stages. Importantly, our patient data informed model enables quantitative approximation of individual patients’ disease history within chronic phase (CP) and significantly separates “early” from “late” CP. Our findings provide a novel rationale for personalized and genome-informed disease progression risk assessment that is independent and complementary to conventional measures of CML disease burden and prognosis. Nature Publishing Group 2016-04-06 /pmc/articles/PMC4822142/ /pubmed/27048866 http://dx.doi.org/10.1038/srep24057 Text en Copyright © 2016, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Brehme, Marc Koschmieder, Steffen Montazeri, Maryam Copland, Mhairi Oehler, Vivian G. Radich, Jerald P. Brümmendorf, Tim H. Schuppert, Andreas Combined Population Dynamics and Entropy Modelling Supports Patient Stratification in Chronic Myeloid Leukemia |
title | Combined Population Dynamics and Entropy Modelling Supports Patient Stratification in Chronic Myeloid Leukemia |
title_full | Combined Population Dynamics and Entropy Modelling Supports Patient Stratification in Chronic Myeloid Leukemia |
title_fullStr | Combined Population Dynamics and Entropy Modelling Supports Patient Stratification in Chronic Myeloid Leukemia |
title_full_unstemmed | Combined Population Dynamics and Entropy Modelling Supports Patient Stratification in Chronic Myeloid Leukemia |
title_short | Combined Population Dynamics and Entropy Modelling Supports Patient Stratification in Chronic Myeloid Leukemia |
title_sort | combined population dynamics and entropy modelling supports patient stratification in chronic myeloid leukemia |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4822142/ https://www.ncbi.nlm.nih.gov/pubmed/27048866 http://dx.doi.org/10.1038/srep24057 |
work_keys_str_mv | AT brehmemarc combinedpopulationdynamicsandentropymodellingsupportspatientstratificationinchronicmyeloidleukemia AT koschmiedersteffen combinedpopulationdynamicsandentropymodellingsupportspatientstratificationinchronicmyeloidleukemia AT montazerimaryam combinedpopulationdynamicsandentropymodellingsupportspatientstratificationinchronicmyeloidleukemia AT coplandmhairi combinedpopulationdynamicsandentropymodellingsupportspatientstratificationinchronicmyeloidleukemia AT oehlerviviang combinedpopulationdynamicsandentropymodellingsupportspatientstratificationinchronicmyeloidleukemia AT radichjeraldp combinedpopulationdynamicsandentropymodellingsupportspatientstratificationinchronicmyeloidleukemia AT brummendorftimh combinedpopulationdynamicsandentropymodellingsupportspatientstratificationinchronicmyeloidleukemia AT schuppertandreas combinedpopulationdynamicsandentropymodellingsupportspatientstratificationinchronicmyeloidleukemia |