Cargando…

Combined Population Dynamics and Entropy Modelling Supports Patient Stratification in Chronic Myeloid Leukemia

Modelling the parameters of multistep carcinogenesis is key for a better understanding of cancer progression, biomarker identification and the design of individualized therapies. Using chronic myeloid leukemia (CML) as a paradigm for hierarchical disease evolution we show that combined population dy...

Descripción completa

Detalles Bibliográficos
Autores principales: Brehme, Marc, Koschmieder, Steffen, Montazeri, Maryam, Copland, Mhairi, Oehler, Vivian G., Radich, Jerald P., Brümmendorf, Tim H., Schuppert, Andreas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4822142/
https://www.ncbi.nlm.nih.gov/pubmed/27048866
http://dx.doi.org/10.1038/srep24057
_version_ 1782425720683757568
author Brehme, Marc
Koschmieder, Steffen
Montazeri, Maryam
Copland, Mhairi
Oehler, Vivian G.
Radich, Jerald P.
Brümmendorf, Tim H.
Schuppert, Andreas
author_facet Brehme, Marc
Koschmieder, Steffen
Montazeri, Maryam
Copland, Mhairi
Oehler, Vivian G.
Radich, Jerald P.
Brümmendorf, Tim H.
Schuppert, Andreas
author_sort Brehme, Marc
collection PubMed
description Modelling the parameters of multistep carcinogenesis is key for a better understanding of cancer progression, biomarker identification and the design of individualized therapies. Using chronic myeloid leukemia (CML) as a paradigm for hierarchical disease evolution we show that combined population dynamic modelling and CML patient biopsy genomic analysis enables patient stratification at unprecedented resolution. Linking CD34(+) similarity as a disease progression marker to patient-derived gene expression entropy separated established CML progression stages and uncovered additional heterogeneity within disease stages. Importantly, our patient data informed model enables quantitative approximation of individual patients’ disease history within chronic phase (CP) and significantly separates “early” from “late” CP. Our findings provide a novel rationale for personalized and genome-informed disease progression risk assessment that is independent and complementary to conventional measures of CML disease burden and prognosis.
format Online
Article
Text
id pubmed-4822142
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-48221422016-04-18 Combined Population Dynamics and Entropy Modelling Supports Patient Stratification in Chronic Myeloid Leukemia Brehme, Marc Koschmieder, Steffen Montazeri, Maryam Copland, Mhairi Oehler, Vivian G. Radich, Jerald P. Brümmendorf, Tim H. Schuppert, Andreas Sci Rep Article Modelling the parameters of multistep carcinogenesis is key for a better understanding of cancer progression, biomarker identification and the design of individualized therapies. Using chronic myeloid leukemia (CML) as a paradigm for hierarchical disease evolution we show that combined population dynamic modelling and CML patient biopsy genomic analysis enables patient stratification at unprecedented resolution. Linking CD34(+) similarity as a disease progression marker to patient-derived gene expression entropy separated established CML progression stages and uncovered additional heterogeneity within disease stages. Importantly, our patient data informed model enables quantitative approximation of individual patients’ disease history within chronic phase (CP) and significantly separates “early” from “late” CP. Our findings provide a novel rationale for personalized and genome-informed disease progression risk assessment that is independent and complementary to conventional measures of CML disease burden and prognosis. Nature Publishing Group 2016-04-06 /pmc/articles/PMC4822142/ /pubmed/27048866 http://dx.doi.org/10.1038/srep24057 Text en Copyright © 2016, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Brehme, Marc
Koschmieder, Steffen
Montazeri, Maryam
Copland, Mhairi
Oehler, Vivian G.
Radich, Jerald P.
Brümmendorf, Tim H.
Schuppert, Andreas
Combined Population Dynamics and Entropy Modelling Supports Patient Stratification in Chronic Myeloid Leukemia
title Combined Population Dynamics and Entropy Modelling Supports Patient Stratification in Chronic Myeloid Leukemia
title_full Combined Population Dynamics and Entropy Modelling Supports Patient Stratification in Chronic Myeloid Leukemia
title_fullStr Combined Population Dynamics and Entropy Modelling Supports Patient Stratification in Chronic Myeloid Leukemia
title_full_unstemmed Combined Population Dynamics and Entropy Modelling Supports Patient Stratification in Chronic Myeloid Leukemia
title_short Combined Population Dynamics and Entropy Modelling Supports Patient Stratification in Chronic Myeloid Leukemia
title_sort combined population dynamics and entropy modelling supports patient stratification in chronic myeloid leukemia
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4822142/
https://www.ncbi.nlm.nih.gov/pubmed/27048866
http://dx.doi.org/10.1038/srep24057
work_keys_str_mv AT brehmemarc combinedpopulationdynamicsandentropymodellingsupportspatientstratificationinchronicmyeloidleukemia
AT koschmiedersteffen combinedpopulationdynamicsandentropymodellingsupportspatientstratificationinchronicmyeloidleukemia
AT montazerimaryam combinedpopulationdynamicsandentropymodellingsupportspatientstratificationinchronicmyeloidleukemia
AT coplandmhairi combinedpopulationdynamicsandentropymodellingsupportspatientstratificationinchronicmyeloidleukemia
AT oehlerviviang combinedpopulationdynamicsandentropymodellingsupportspatientstratificationinchronicmyeloidleukemia
AT radichjeraldp combinedpopulationdynamicsandentropymodellingsupportspatientstratificationinchronicmyeloidleukemia
AT brummendorftimh combinedpopulationdynamicsandentropymodellingsupportspatientstratificationinchronicmyeloidleukemia
AT schuppertandreas combinedpopulationdynamicsandentropymodellingsupportspatientstratificationinchronicmyeloidleukemia