Cargando…
Detecting gene-gene interactions using a permutation-based random forest method
BACKGROUND: Identifying gene-gene interactions is essential to understand disease susceptibility and to detect genetic architectures underlying complex diseases. Here, we aimed at developing a permutation-based methodology relying on a machine learning method, random forest (RF), to detect gene-gene...
Autores principales: | Li, Jing, Malley, James D., Andrew, Angeline S., Karagas, Margaret R., Moore, Jason H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4822295/ https://www.ncbi.nlm.nih.gov/pubmed/27053949 http://dx.doi.org/10.1186/s13040-016-0093-5 |
Ejemplares similares
-
An AUC-based permutation variable importance measure for random forests
por: Janitza, Silke, et al.
Publicado: (2013) -
Optimized permutation testing for information theoretic measures of multi-gene interactions
por: Kunert-Graf, James M., et al.
Publicado: (2021) -
Functional dyadicity and heterophilicity of gene-gene interactions in statistical epistasis networks
por: Hu, Ting, et al.
Publicado: (2015) -
The behaviour of random forest permutation-based variable importance measures under predictor correlation
por: Nicodemus, Kristin K, et al.
Publicado: (2010) -
Maximum linkage space-time permutation scan statistics for disease outbreak detection
por: Costa, Marcelo A, et al.
Publicado: (2014)