Cargando…
Dimension reduction and shrinkage methods for high dimensional disease risk scores in historical data
BACKGROUND: Multivariable confounder adjustment in comparative studies of newly marketed drugs can be limited by small numbers of exposed patients and even fewer outcomes. Disease risk scores (DRSs) developed in historical comparator drug users before the new drug entered the market may improve adju...
Autores principales: | Kumamaru, Hiraku, Schneeweiss, Sebastian, Glynn, Robert J., Setoguchi, Soko, Gagne, Joshua J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4822311/ https://www.ncbi.nlm.nih.gov/pubmed/27053942 http://dx.doi.org/10.1186/s12982-016-0047-x |
Ejemplares similares
-
Utility of automated data-adaptive propensity score method for confounding by indication in comparative effectiveness study in real world Medicare and registry data
por: Kumamaru, Hiraku, et al.
Publicado: (2022) -
Risk score modeling of multiple gene to gene interactions using aggregated-multifactor dimensionality reduction
por: Dai, Hongying, et al.
Publicado: (2013) -
Prediction With Dimension Reduction of Multiple Molecular Data Sources for Patient Survival
por: Kaplan, Adam, et al.
Publicado: (2017) -
Controlling Confounding in a Study of Oral Anticoagulants: Comparing Disease Risk Scores Developed Using Different Follow-Up Approaches
por: Bohn, Justin, et al.
Publicado: (2019) -
Performance of model-based multifactor dimensionality reduction methods for epistasis detection by controlling population structure
por: Abegaz, Fentaw, et al.
Publicado: (2021)