Cargando…
Luminal long non-coding RNAs regulated by estrogen receptor alpha in a ligand-independent manner show functional roles in breast cancer
Estrogen Receptor alpha (ERα) activation by estrogenic hormones induces luminal breast cancer cell proliferation. However, ERα plays also important hormone-independent functions to maintain breast tumor cells epithelial phenotype. We reported previously by RNA-Seq that in MCF-7 cells in absence of h...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4823100/ https://www.ncbi.nlm.nih.gov/pubmed/26621851 http://dx.doi.org/10.18632/oncotarget.6420 |
Sumario: | Estrogen Receptor alpha (ERα) activation by estrogenic hormones induces luminal breast cancer cell proliferation. However, ERα plays also important hormone-independent functions to maintain breast tumor cells epithelial phenotype. We reported previously by RNA-Seq that in MCF-7 cells in absence of hormones ERα down-regulation changes the expression of several genes linked to cellular development, representing a specific subset of estrogen-induced genes. Here, we report regulation of long non-coding RNAs from the same experimental settings. A list of 133 Apo-ERα-Regulated lncRNAs (AER-lncRNAs) was identified and extensively characterized using published data from cancer cell lines and tumor tissues, or experiments on MCF-7 cells. For several features, we ran validation using cell cultures or fresh tumor biopsies. AER-lncRNAs represent a specific subset, only marginally overlapping estrogen-induced transcripts, whose expression is largely restricted to luminal cells and which is able to perfectly classify breast tumor subtypes. The most abundant AER-lncRNA, DSCAM-AS1, is expressed in ERα+ breast carcinoma, but not in pre-neoplastic lesions, and correlates inversely with EMT markers. Down-regulation of DSCAM-AS1 recapitulated, in part, the effect of silencing ERα, i.e. growth arrest and induction of EMT markers. In conclusion, we report an ERα-dependent lncRNA set representing a novel luminal signature in breast cancer cells. |
---|