Cargando…
Enhanced efficiency of genetic programming toward cardiomyocyte creation through topographical cues
Generation of de novo cardiomyocytes through viral over-expression of key transcription factors represents a highly promising strategy for cardiac muscle tissue regeneration. Although the feasibility of cell reprogramming has been proven possible both in vitro and in vivo, the efficiency of the proc...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4823279/ https://www.ncbi.nlm.nih.gov/pubmed/26302234 http://dx.doi.org/10.1016/j.biomaterials.2015.07.063 |
_version_ | 1782425880630394880 |
---|---|
author | Morez, Constant Noseda, Michela Paiva, Marta Abreu Belian, Elisa Schneider, Michael D. Stevens, Molly M. |
author_facet | Morez, Constant Noseda, Michela Paiva, Marta Abreu Belian, Elisa Schneider, Michael D. Stevens, Molly M. |
author_sort | Morez, Constant |
collection | PubMed |
description | Generation of de novo cardiomyocytes through viral over-expression of key transcription factors represents a highly promising strategy for cardiac muscle tissue regeneration. Although the feasibility of cell reprogramming has been proven possible both in vitro and in vivo, the efficiency of the process remains extremely low. Here, we report a chemical-free technique in which topographical cues, more specifically parallel microgrooves, enhance the directed differentiation of cardiac progenitors into cardiomyocyte-like cells. Using a lentivirus-mediated direct reprogramming strategy for expression of Myocardin, Tbx5, and Mef2c, we showed that the microgrooved substrate provokes an increase in histone H3 acetylation (AcH3), known to be a permissive environment for reprogramming by “stemness” factors, as well as stimulation of myocardin sumoylation, a post-translational modification essential to the transcriptional function of this key co-activator. These biochemical effects mimicked those of a pharmacological histone deacetylase inhibitor, valproic acid (VPA), and like VPA markedly augmented the expression of cardiomyocyte-specific proteins by the genetically engineered cells. No instructive effect was seen in cells unresponsive to VPA. In addition, the anisotropy resulting from parallel microgrooves induced cellular alignment, mimicking the native ventricular myocardium and augmenting sarcomere organization. |
format | Online Article Text |
id | pubmed-4823279 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Elsevier Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-48232792016-04-15 Enhanced efficiency of genetic programming toward cardiomyocyte creation through topographical cues Morez, Constant Noseda, Michela Paiva, Marta Abreu Belian, Elisa Schneider, Michael D. Stevens, Molly M. Biomaterials Article Generation of de novo cardiomyocytes through viral over-expression of key transcription factors represents a highly promising strategy for cardiac muscle tissue regeneration. Although the feasibility of cell reprogramming has been proven possible both in vitro and in vivo, the efficiency of the process remains extremely low. Here, we report a chemical-free technique in which topographical cues, more specifically parallel microgrooves, enhance the directed differentiation of cardiac progenitors into cardiomyocyte-like cells. Using a lentivirus-mediated direct reprogramming strategy for expression of Myocardin, Tbx5, and Mef2c, we showed that the microgrooved substrate provokes an increase in histone H3 acetylation (AcH3), known to be a permissive environment for reprogramming by “stemness” factors, as well as stimulation of myocardin sumoylation, a post-translational modification essential to the transcriptional function of this key co-activator. These biochemical effects mimicked those of a pharmacological histone deacetylase inhibitor, valproic acid (VPA), and like VPA markedly augmented the expression of cardiomyocyte-specific proteins by the genetically engineered cells. No instructive effect was seen in cells unresponsive to VPA. In addition, the anisotropy resulting from parallel microgrooves induced cellular alignment, mimicking the native ventricular myocardium and augmenting sarcomere organization. Elsevier Science 2015-11 /pmc/articles/PMC4823279/ /pubmed/26302234 http://dx.doi.org/10.1016/j.biomaterials.2015.07.063 Text en © 2015 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Morez, Constant Noseda, Michela Paiva, Marta Abreu Belian, Elisa Schneider, Michael D. Stevens, Molly M. Enhanced efficiency of genetic programming toward cardiomyocyte creation through topographical cues |
title | Enhanced efficiency of genetic programming toward cardiomyocyte creation through topographical cues |
title_full | Enhanced efficiency of genetic programming toward cardiomyocyte creation through topographical cues |
title_fullStr | Enhanced efficiency of genetic programming toward cardiomyocyte creation through topographical cues |
title_full_unstemmed | Enhanced efficiency of genetic programming toward cardiomyocyte creation through topographical cues |
title_short | Enhanced efficiency of genetic programming toward cardiomyocyte creation through topographical cues |
title_sort | enhanced efficiency of genetic programming toward cardiomyocyte creation through topographical cues |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4823279/ https://www.ncbi.nlm.nih.gov/pubmed/26302234 http://dx.doi.org/10.1016/j.biomaterials.2015.07.063 |
work_keys_str_mv | AT morezconstant enhancedefficiencyofgeneticprogrammingtowardcardiomyocytecreationthroughtopographicalcues AT nosedamichela enhancedefficiencyofgeneticprogrammingtowardcardiomyocytecreationthroughtopographicalcues AT paivamartaabreu enhancedefficiencyofgeneticprogrammingtowardcardiomyocytecreationthroughtopographicalcues AT belianelisa enhancedefficiencyofgeneticprogrammingtowardcardiomyocytecreationthroughtopographicalcues AT schneidermichaeld enhancedefficiencyofgeneticprogrammingtowardcardiomyocytecreationthroughtopographicalcues AT stevensmollym enhancedefficiencyofgeneticprogrammingtowardcardiomyocytecreationthroughtopographicalcues |