Cargando…

The effect of amniotic membrane extract on umbilical cord blood mesenchymal stem cell expansion: is there any need to save the amniotic membrane besides the umbilical cord blood?

OBJECTIVE(S): Umbilical cord blood is a good source of the mesenchymal stem cells that can be banked, expanded and used in regenerative medicine. The objective of this study was to test whether amniotic membrane extract, as a rich source of growth factors such as basic-fibroblast growth factor, can...

Descripción completa

Detalles Bibliográficos
Autores principales: Vojdani, Zahra, Babaei, Ali, Vasaghi, Attiyeh, Habibagahi, Mojtaba, Talaei-Khozani, Tahereh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Mashhad University of Medical Sciences 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4823621/
https://www.ncbi.nlm.nih.gov/pubmed/27096069
Descripción
Sumario:OBJECTIVE(S): Umbilical cord blood is a good source of the mesenchymal stem cells that can be banked, expanded and used in regenerative medicine. The objective of this study was to test whether amniotic membrane extract, as a rich source of growth factors such as basic-fibroblast growth factor, can promote the proliferation potential of the umbilical cord mesenchymal stem cells. MATERIALS AND METHODS: The study design was interventional. Umbilical cord mesenchymal stem cells were isolated from voluntary healthy infants from hospitals in Shiraz, Iran, cultured in the presence of basic-fibroblast growth factor and amniotic membrane extracts (from pooled - samples), and compared with control cultures. Proliferation assay was performed and duplication number and time were calculated. The expression of stem cell’s specific markers and the differentiation capacity toward osteogenic and adipogenic lineages were evaluated. RESULTS: Amniotic membrane extract led to a significant increase in the proliferation rate and duplication number and a decrease in the duplication time without any change in the cell morphology. Both amniotic membrane extract and basic-fibroblast growth factor altered the expressing of CD44 and CD105 in cell population. Treating basic-fibroblast growth factor but not the amniotic membrane extract favored the differentiation potential of the stem cells toward osteogenic lineage. CONCLUSION: The amniotic membrane extract administration accelerated cell proliferation and modified the CD marker characteristics which may be due to the induction of differentiation toward a specific lineage. Amniotic membrane extract may enhance the proliferation rate and duplication number of the stem cell through changing the duplication time.