Cargando…
Education on electrical phenomena involved in electroporation-based therapies and treatments: a blended learning approach
BACKGROUND: Electroporation-based applications require multidisciplinary expertise and collaboration of experts with different professional backgrounds in engineering and science. Beginning in 2003, an international scientific workshop and postgraduate course electroporation based technologies and t...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4823865/ https://www.ncbi.nlm.nih.gov/pubmed/27056369 http://dx.doi.org/10.1186/s12938-016-0152-7 |
_version_ | 1782425997636796416 |
---|---|
author | Čorović, Selma Mahnič-Kalamiza, Samo Miklavčič, Damijan |
author_facet | Čorović, Selma Mahnič-Kalamiza, Samo Miklavčič, Damijan |
author_sort | Čorović, Selma |
collection | PubMed |
description | BACKGROUND: Electroporation-based applications require multidisciplinary expertise and collaboration of experts with different professional backgrounds in engineering and science. Beginning in 2003, an international scientific workshop and postgraduate course electroporation based technologies and treatments (EBTT) has been organized at the University of Ljubljana to facilitate transfer of knowledge from leading experts to researches, students and newcomers in the field of electroporation. In this paper we present one of the integral parts of EBTT: an e-learning practical work we developed to complement delivery of knowledge via lectures and laboratory work, thus providing a blended learning approach on electrical phenomena involved in electroporation-based therapies and treatments. METHODS: The learning effect was assessed via a pre- and post e-learning examination test composed of 10 multiple choice questions (i.e. items). The e-learning practical work session and both of the e-learning examination tests were carried out after the live EBTT lectures and other laboratory work. Statistical analysis was performed to compare and evaluate the learning effect measured in two groups of students: (1) electrical engineers and (2) natural scientists (i.e. medical doctors, biologists and chemists) undergoing the e-learning practical work in 2011–2014 academic years. Item analysis was performed to assess the difficulty of each item of the examination test. RESULTS: The results of our study show that the total score on the post examination test significantly improved and the item difficulty in both experimental groups decreased. The natural scientists reached the same level of knowledge (no statistical difference in total post-examination test score) on the post-course test take, as do electrical engineers, although the engineers started with statistically higher total pre-test examination score, as expected. CONCLUSIONS: The main objective of this study was to investigate whether the educational content the e-learning practical work presented to the students with different professional backgrounds enhanced their knowledge acquired via lectures during EBTT. We compared the learning effect assessed in two experimental groups undergoing the e-learning practical work: electrical engineers and natural scientists. The same level of knowledge on the post-course examination was reached in both groups. The results indicate that our e-learning platform supported by blended learning approach provides an effective learning tool for populations with mixed professional backgrounds and thus plays an important role in bridging the gap between scientific domains involved in electroporation-based technologies and treatments. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12938-016-0152-7) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4823865 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-48238652016-04-08 Education on electrical phenomena involved in electroporation-based therapies and treatments: a blended learning approach Čorović, Selma Mahnič-Kalamiza, Samo Miklavčič, Damijan Biomed Eng Online Research BACKGROUND: Electroporation-based applications require multidisciplinary expertise and collaboration of experts with different professional backgrounds in engineering and science. Beginning in 2003, an international scientific workshop and postgraduate course electroporation based technologies and treatments (EBTT) has been organized at the University of Ljubljana to facilitate transfer of knowledge from leading experts to researches, students and newcomers in the field of electroporation. In this paper we present one of the integral parts of EBTT: an e-learning practical work we developed to complement delivery of knowledge via lectures and laboratory work, thus providing a blended learning approach on electrical phenomena involved in electroporation-based therapies and treatments. METHODS: The learning effect was assessed via a pre- and post e-learning examination test composed of 10 multiple choice questions (i.e. items). The e-learning practical work session and both of the e-learning examination tests were carried out after the live EBTT lectures and other laboratory work. Statistical analysis was performed to compare and evaluate the learning effect measured in two groups of students: (1) electrical engineers and (2) natural scientists (i.e. medical doctors, biologists and chemists) undergoing the e-learning practical work in 2011–2014 academic years. Item analysis was performed to assess the difficulty of each item of the examination test. RESULTS: The results of our study show that the total score on the post examination test significantly improved and the item difficulty in both experimental groups decreased. The natural scientists reached the same level of knowledge (no statistical difference in total post-examination test score) on the post-course test take, as do electrical engineers, although the engineers started with statistically higher total pre-test examination score, as expected. CONCLUSIONS: The main objective of this study was to investigate whether the educational content the e-learning practical work presented to the students with different professional backgrounds enhanced their knowledge acquired via lectures during EBTT. We compared the learning effect assessed in two experimental groups undergoing the e-learning practical work: electrical engineers and natural scientists. The same level of knowledge on the post-course examination was reached in both groups. The results indicate that our e-learning platform supported by blended learning approach provides an effective learning tool for populations with mixed professional backgrounds and thus plays an important role in bridging the gap between scientific domains involved in electroporation-based technologies and treatments. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12938-016-0152-7) contains supplementary material, which is available to authorized users. BioMed Central 2016-04-07 /pmc/articles/PMC4823865/ /pubmed/27056369 http://dx.doi.org/10.1186/s12938-016-0152-7 Text en © Čorović et al. 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Čorović, Selma Mahnič-Kalamiza, Samo Miklavčič, Damijan Education on electrical phenomena involved in electroporation-based therapies and treatments: a blended learning approach |
title | Education on electrical phenomena involved in electroporation-based therapies and treatments: a blended learning approach |
title_full | Education on electrical phenomena involved in electroporation-based therapies and treatments: a blended learning approach |
title_fullStr | Education on electrical phenomena involved in electroporation-based therapies and treatments: a blended learning approach |
title_full_unstemmed | Education on electrical phenomena involved in electroporation-based therapies and treatments: a blended learning approach |
title_short | Education on electrical phenomena involved in electroporation-based therapies and treatments: a blended learning approach |
title_sort | education on electrical phenomena involved in electroporation-based therapies and treatments: a blended learning approach |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4823865/ https://www.ncbi.nlm.nih.gov/pubmed/27056369 http://dx.doi.org/10.1186/s12938-016-0152-7 |
work_keys_str_mv | AT corovicselma educationonelectricalphenomenainvolvedinelectroporationbasedtherapiesandtreatmentsablendedlearningapproach AT mahnickalamizasamo educationonelectricalphenomenainvolvedinelectroporationbasedtherapiesandtreatmentsablendedlearningapproach AT miklavcicdamijan educationonelectricalphenomenainvolvedinelectroporationbasedtherapiesandtreatmentsablendedlearningapproach |