Cargando…

Education on electrical phenomena involved in electroporation-based therapies and treatments: a blended learning approach

BACKGROUND: Electroporation-based applications require multidisciplinary expertise and collaboration of experts with different professional backgrounds in engineering and science. Beginning in 2003, an international scientific workshop and postgraduate course electroporation based technologies and t...

Descripción completa

Detalles Bibliográficos
Autores principales: Čorović, Selma, Mahnič-Kalamiza, Samo, Miklavčič, Damijan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4823865/
https://www.ncbi.nlm.nih.gov/pubmed/27056369
http://dx.doi.org/10.1186/s12938-016-0152-7
_version_ 1782425997636796416
author Čorović, Selma
Mahnič-Kalamiza, Samo
Miklavčič, Damijan
author_facet Čorović, Selma
Mahnič-Kalamiza, Samo
Miklavčič, Damijan
author_sort Čorović, Selma
collection PubMed
description BACKGROUND: Electroporation-based applications require multidisciplinary expertise and collaboration of experts with different professional backgrounds in engineering and science. Beginning in 2003, an international scientific workshop and postgraduate course electroporation based technologies and treatments (EBTT) has been organized at the University of Ljubljana to facilitate transfer of knowledge from leading experts to researches, students and newcomers in the field of electroporation. In this paper we present one of the integral parts of EBTT: an e-learning practical work we developed to complement delivery of knowledge via lectures and laboratory work, thus providing a blended learning approach on electrical phenomena involved in electroporation-based therapies and treatments. METHODS: The learning effect was assessed via a pre- and post e-learning examination test composed of 10 multiple choice questions (i.e. items). The e-learning practical work session and both of the e-learning examination tests were carried out after the live EBTT lectures and other laboratory work. Statistical analysis was performed to compare and evaluate the learning effect measured in two groups of students: (1) electrical engineers and (2) natural scientists (i.e. medical doctors, biologists and chemists) undergoing the e-learning practical work in 2011–2014 academic years. Item analysis was performed to assess the difficulty of each item of the examination test. RESULTS: The results of our study show that the total score on the post examination test significantly improved and the item difficulty in both experimental groups decreased. The natural scientists reached the same level of knowledge (no statistical difference in total post-examination test score) on the post-course test take, as do electrical engineers, although the engineers started with statistically higher total pre-test examination score, as expected. CONCLUSIONS: The main objective of this study was to investigate whether the educational content the e-learning practical work presented to the students with different professional backgrounds enhanced their knowledge acquired via lectures during EBTT. We compared the learning effect assessed in two experimental groups undergoing the e-learning practical work: electrical engineers and natural scientists. The same level of knowledge on the post-course examination was reached in both groups. The results indicate that our e-learning platform supported by blended learning approach provides an effective learning tool for populations with mixed professional backgrounds and thus plays an important role in bridging the gap between scientific domains involved in electroporation-based technologies and treatments. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12938-016-0152-7) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-4823865
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-48238652016-04-08 Education on electrical phenomena involved in electroporation-based therapies and treatments: a blended learning approach Čorović, Selma Mahnič-Kalamiza, Samo Miklavčič, Damijan Biomed Eng Online Research BACKGROUND: Electroporation-based applications require multidisciplinary expertise and collaboration of experts with different professional backgrounds in engineering and science. Beginning in 2003, an international scientific workshop and postgraduate course electroporation based technologies and treatments (EBTT) has been organized at the University of Ljubljana to facilitate transfer of knowledge from leading experts to researches, students and newcomers in the field of electroporation. In this paper we present one of the integral parts of EBTT: an e-learning practical work we developed to complement delivery of knowledge via lectures and laboratory work, thus providing a blended learning approach on electrical phenomena involved in electroporation-based therapies and treatments. METHODS: The learning effect was assessed via a pre- and post e-learning examination test composed of 10 multiple choice questions (i.e. items). The e-learning practical work session and both of the e-learning examination tests were carried out after the live EBTT lectures and other laboratory work. Statistical analysis was performed to compare and evaluate the learning effect measured in two groups of students: (1) electrical engineers and (2) natural scientists (i.e. medical doctors, biologists and chemists) undergoing the e-learning practical work in 2011–2014 academic years. Item analysis was performed to assess the difficulty of each item of the examination test. RESULTS: The results of our study show that the total score on the post examination test significantly improved and the item difficulty in both experimental groups decreased. The natural scientists reached the same level of knowledge (no statistical difference in total post-examination test score) on the post-course test take, as do electrical engineers, although the engineers started with statistically higher total pre-test examination score, as expected. CONCLUSIONS: The main objective of this study was to investigate whether the educational content the e-learning practical work presented to the students with different professional backgrounds enhanced their knowledge acquired via lectures during EBTT. We compared the learning effect assessed in two experimental groups undergoing the e-learning practical work: electrical engineers and natural scientists. The same level of knowledge on the post-course examination was reached in both groups. The results indicate that our e-learning platform supported by blended learning approach provides an effective learning tool for populations with mixed professional backgrounds and thus plays an important role in bridging the gap between scientific domains involved in electroporation-based technologies and treatments. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12938-016-0152-7) contains supplementary material, which is available to authorized users. BioMed Central 2016-04-07 /pmc/articles/PMC4823865/ /pubmed/27056369 http://dx.doi.org/10.1186/s12938-016-0152-7 Text en © Čorović et al. 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Čorović, Selma
Mahnič-Kalamiza, Samo
Miklavčič, Damijan
Education on electrical phenomena involved in electroporation-based therapies and treatments: a blended learning approach
title Education on electrical phenomena involved in electroporation-based therapies and treatments: a blended learning approach
title_full Education on electrical phenomena involved in electroporation-based therapies and treatments: a blended learning approach
title_fullStr Education on electrical phenomena involved in electroporation-based therapies and treatments: a blended learning approach
title_full_unstemmed Education on electrical phenomena involved in electroporation-based therapies and treatments: a blended learning approach
title_short Education on electrical phenomena involved in electroporation-based therapies and treatments: a blended learning approach
title_sort education on electrical phenomena involved in electroporation-based therapies and treatments: a blended learning approach
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4823865/
https://www.ncbi.nlm.nih.gov/pubmed/27056369
http://dx.doi.org/10.1186/s12938-016-0152-7
work_keys_str_mv AT corovicselma educationonelectricalphenomenainvolvedinelectroporationbasedtherapiesandtreatmentsablendedlearningapproach
AT mahnickalamizasamo educationonelectricalphenomenainvolvedinelectroporationbasedtherapiesandtreatmentsablendedlearningapproach
AT miklavcicdamijan educationonelectricalphenomenainvolvedinelectroporationbasedtherapiesandtreatmentsablendedlearningapproach