Cargando…
Identifying Individuals at High Risk of Psychosis: Predictive Utility of Support Vector Machine using Structural and Functional MRI Data
The identification of individuals at high risk of developing psychosis is entirely based on clinical assessment, associated with limited predictive potential. There is, therefore, increasing interest in the development of biological markers that could be used in clinical practice for this purpose. W...
Autores principales: | Valli, Isabel, Marquand, Andre F., Mechelli, Andrea, Raffin, Marie, Allen, Paul, Seal, Marc L., McGuire, Philip |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824756/ https://www.ncbi.nlm.nih.gov/pubmed/27092086 http://dx.doi.org/10.3389/fpsyt.2016.00052 |
Ejemplares similares
-
Using Structural Neuroimaging to Make Quantitative Predictions of Symptom Progression in Individuals at Ultra-High Risk for Psychosis
por: Tognin, Stefania, et al.
Publicado: (2014) -
An empirical comparison of different approaches for combining multimodal neuroimaging data with support vector machine
por: Pettersson-Yeo, William, et al.
Publicado: (2014) -
Prediction of transition to psychosis from an at-risk mental state using structural neuroimaging, genetic, and environmental data
por: Tavares, Vânia, et al.
Publicado: (2023) -
Transdiagnostic Individualized Clinically Based Risk Calculator for the Detection of Individuals at Risk and the Prediction of Psychosis: Model Refinement Including Nonlinear Effects of Age
por: Fusar-Poli, Paolo, et al.
Publicado: (2019) -
Relationship between Glutamate Dysfunction and Symptoms and Cognitive Function in Psychosis
por: Merritt, Kate, et al.
Publicado: (2013)