Cargando…

Epitope analysis and protection by a ROP19 DNA vaccine against Toxoplasma gondii

We used bioinformatics approaches to identify B-cell and T-cell epitopes on the ROP19 protein of Toxoplasma gondii. Then, we constructed plasmids with ROP19 (pEGFP-C1-ROP19) and injected them into BALB/c mice to test the immunoprotection induced by this vaccine candidate. The results showed that imm...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Jian, Wang, Lin, Lu, Gang, Zhou, Aihua, Zhu, Meiyan, Li, Qihang, Wang, Zhilin, Arken, Miradel, Wang, Ao, He, Shenyi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: EDP Sciences 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824872/
https://www.ncbi.nlm.nih.gov/pubmed/27055564
http://dx.doi.org/10.1051/parasite/2016017
Descripción
Sumario:We used bioinformatics approaches to identify B-cell and T-cell epitopes on the ROP19 protein of Toxoplasma gondii. Then, we constructed plasmids with ROP19 (pEGFP-C1-ROP19) and injected them into BALB/c mice to test the immunoprotection induced by this vaccine candidate. The results showed that immunization with pEGFP-C1-ROP19 induced effective cellular and humoral immune responses in mice; specifically, high serum levels of T. gondii-specific IgG and increased interferon-gamma production by splenocytes. Furthermore, the mice vaccinated with pROP19 had significantly fewer brain cysts (583 ± 160) than the mice injected with phosphate-buffered saline (1350 ± 243) or with the control plasmid, pEGFP-C1 (1300 ± 167). Compared with PBS-treated mice, those immunized with pROP19 had only 43% of the number of brain cysts. These results suggest that the DNA vaccine encoding ROP19 induced a significant immune response and provided protection against a challenge with T. gondii strain PRU cysts.