Cargando…

Convergence of soil microbial properties after plant colonization of an experimental plant diversity gradient

BACKGROUND: Several studies have examined the effects of plant colonization on aboveground communities and processes. However, the effects of plant colonization on soil microbial communities are less known. We addressed this gap by studying effects of plant colonization within an experimental plant...

Descripción completa

Detalles Bibliográficos
Autores principales: Steinauer, Katja, Jensen, Britta, Strecker, Tanja, de Luca, Enrica, Scheu, Stefan, Eisenhauer, Nico
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4825091/
https://www.ncbi.nlm.nih.gov/pubmed/27056681
http://dx.doi.org/10.1186/s12898-016-0073-0
Descripción
Sumario:BACKGROUND: Several studies have examined the effects of plant colonization on aboveground communities and processes. However, the effects of plant colonization on soil microbial communities are less known. We addressed this gap by studying effects of plant colonization within an experimental plant diversity gradient in subplots that had not been weeded for 2 and 5 years. This study was part of a long-term grassland biodiversity experiment (Jena Experiment) with a gradient in plant species richness (1, 2, 4, 8, 16, and 60 sown species per plot). We measured plant species richness and productivity (aboveground cover and biomass) as well as soil microbial basal respiration and biomass in non-weeded subplots and compared the results with those of weeded subplots of the same plots. RESULTS: After 2 and 5 years of plant colonization, the number of colonizing plant species decreased with increasing plant diversity, i.e., low-diversity plant communities were most vulnerable to colonization. Plant colonization offset the significant relationship between sown plant diversity and plant biomass production. In line with plant community responses, soil basal respiration and microbial biomass increased with increasing sown plant diversity in weeded subplots, but soil microbial properties converged in non-weeded subplots and were not significantly affected by the initial plant species richness gradient. CONCLUSION: Colonizing plant species change the quantity and quality of inputs to the soil, thereby altering soil microbial properties. Thus, plant community convergence is likely to be rapidly followed by the convergence of microbial properties in the soil. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12898-016-0073-0) contains supplementary material, which is available to authorized users.