Cargando…
Query-Based Outlier Detection in Heterogeneous Information Networks
Outlier or anomaly detection in large data sets is a fundamental task in data science, with broad applications. However, in real data sets with high-dimensional space, most outliers are hidden in certain dimensional combinations and are relative to a user’s search space and interest. It is often mor...
Autores principales: | Kuck, Jonathan, Zhuang, Honglei, Yan, Xifeng, Cam, Hasan, Han, Jiawei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4825692/ https://www.ncbi.nlm.nih.gov/pubmed/27064397 http://dx.doi.org/10.5441/002/edbt.2015.29 |
Ejemplares similares
-
Convolutional Neural Network-Based Discriminator for Outlier Detection
por: Alharbi, Fahad, et al.
Publicado: (2021) -
Fluctuation-based outlier detection
por: Du, Xusheng, et al.
Publicado: (2023) -
Detecting Outlier Microarray Arrays by Correlation and Percentage of Outliers Spots
por: Yang, Song, et al.
Publicado: (2007) -
Prediction of heterogeneous differential genes by detecting outliers to a Gaussian tight cluster
por: Yang, Zihua, et al.
Publicado: (2013) -
Specific Direction-Based Outlier Detection Approach for GNSS Vector Networks
por: Nie, Yufeng, et al.
Publicado: (2019)