Cargando…
Long term Glycemic Control Using Polymer Encapsulated, Human Stem-Cell Derived β-cells in Immune Competent mice
The transplantation of glucose-responsive, insulin-producing cells offers the potential for restoring glycemic control in diabetic patients(1). Pancreas transplantation and the infusion of cadaveric islets are currently implemented clinically(2), but are limited by the adverse effects of lifetime im...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4825868/ https://www.ncbi.nlm.nih.gov/pubmed/26808346 http://dx.doi.org/10.1038/nm.4030 |
_version_ | 1782426261851734016 |
---|---|
author | Vegas, Arturo J. Veiseh, Omid Gürtler, Mads Millman, Jeffrey R. Pagliuca, Felicia W. Bader, Andrew R. Doloff, Joshua C. Li, Jie Chen, Michael Olejnik, Karsten Tam, Hok Hei Jhunjhunwala, Siddharth Langan, Erin Aresta-Dasilva, Stephanie Gandham, Srujan McGarrigle, James Bochenek, Matthew A. Hollister-Lock, Jennifer Oberholzer, Jose Greiner, Dale L. Weir, Gordon C. Melton, Douglas A. Langer, Robert Anderson, Daniel G. |
author_facet | Vegas, Arturo J. Veiseh, Omid Gürtler, Mads Millman, Jeffrey R. Pagliuca, Felicia W. Bader, Andrew R. Doloff, Joshua C. Li, Jie Chen, Michael Olejnik, Karsten Tam, Hok Hei Jhunjhunwala, Siddharth Langan, Erin Aresta-Dasilva, Stephanie Gandham, Srujan McGarrigle, James Bochenek, Matthew A. Hollister-Lock, Jennifer Oberholzer, Jose Greiner, Dale L. Weir, Gordon C. Melton, Douglas A. Langer, Robert Anderson, Daniel G. |
author_sort | Vegas, Arturo J. |
collection | PubMed |
description | The transplantation of glucose-responsive, insulin-producing cells offers the potential for restoring glycemic control in diabetic patients(1). Pancreas transplantation and the infusion of cadaveric islets are currently implemented clinically(2), but are limited by the adverse effects of lifetime immunosuppression and the limited supply of donor tissue(3). The latter concern may be addressed by recently described glucose responsive mature β-cells derived from human embryonic stem cells; called SC-β, these cells may represent an unlimited human cell source for pancreas replacement therapy(4). Strategies to address the immunosuppression concern include immunoisolation of insulin-producing cells with porous biomaterials that function as an immune barrier(5,6). However, clinical implementation has been challenging due to host immune responses to implant materials(7). Here, we report the first long term glycemic correction of a diabetic, immune-competent animal model with human SC-β cells. SC-β cells were encapsulated with alginate-derivatives capable of mitigating foreign body responses in vivo, and implanted into the intraperitoneal (IP) space of streptozotocin-treated (STZ) C57BL/6J mice. These implants induced glycemic correction until removal at 174 days without any immunosuppression. Human C-peptide concentrations and in vivo glucose responsiveness demonstrate therapeutically relevant glycemic control. Implants retrieved after 174 days contained viable insulin-producing cells. |
format | Online Article Text |
id | pubmed-4825868 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
record_format | MEDLINE/PubMed |
spelling | pubmed-48258682016-07-25 Long term Glycemic Control Using Polymer Encapsulated, Human Stem-Cell Derived β-cells in Immune Competent mice Vegas, Arturo J. Veiseh, Omid Gürtler, Mads Millman, Jeffrey R. Pagliuca, Felicia W. Bader, Andrew R. Doloff, Joshua C. Li, Jie Chen, Michael Olejnik, Karsten Tam, Hok Hei Jhunjhunwala, Siddharth Langan, Erin Aresta-Dasilva, Stephanie Gandham, Srujan McGarrigle, James Bochenek, Matthew A. Hollister-Lock, Jennifer Oberholzer, Jose Greiner, Dale L. Weir, Gordon C. Melton, Douglas A. Langer, Robert Anderson, Daniel G. Nat Med Article The transplantation of glucose-responsive, insulin-producing cells offers the potential for restoring glycemic control in diabetic patients(1). Pancreas transplantation and the infusion of cadaveric islets are currently implemented clinically(2), but are limited by the adverse effects of lifetime immunosuppression and the limited supply of donor tissue(3). The latter concern may be addressed by recently described glucose responsive mature β-cells derived from human embryonic stem cells; called SC-β, these cells may represent an unlimited human cell source for pancreas replacement therapy(4). Strategies to address the immunosuppression concern include immunoisolation of insulin-producing cells with porous biomaterials that function as an immune barrier(5,6). However, clinical implementation has been challenging due to host immune responses to implant materials(7). Here, we report the first long term glycemic correction of a diabetic, immune-competent animal model with human SC-β cells. SC-β cells were encapsulated with alginate-derivatives capable of mitigating foreign body responses in vivo, and implanted into the intraperitoneal (IP) space of streptozotocin-treated (STZ) C57BL/6J mice. These implants induced glycemic correction until removal at 174 days without any immunosuppression. Human C-peptide concentrations and in vivo glucose responsiveness demonstrate therapeutically relevant glycemic control. Implants retrieved after 174 days contained viable insulin-producing cells. 2016-01-25 2016-03 /pmc/articles/PMC4825868/ /pubmed/26808346 http://dx.doi.org/10.1038/nm.4030 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Vegas, Arturo J. Veiseh, Omid Gürtler, Mads Millman, Jeffrey R. Pagliuca, Felicia W. Bader, Andrew R. Doloff, Joshua C. Li, Jie Chen, Michael Olejnik, Karsten Tam, Hok Hei Jhunjhunwala, Siddharth Langan, Erin Aresta-Dasilva, Stephanie Gandham, Srujan McGarrigle, James Bochenek, Matthew A. Hollister-Lock, Jennifer Oberholzer, Jose Greiner, Dale L. Weir, Gordon C. Melton, Douglas A. Langer, Robert Anderson, Daniel G. Long term Glycemic Control Using Polymer Encapsulated, Human Stem-Cell Derived β-cells in Immune Competent mice |
title | Long term Glycemic Control Using Polymer Encapsulated, Human Stem-Cell Derived β-cells in Immune Competent mice |
title_full | Long term Glycemic Control Using Polymer Encapsulated, Human Stem-Cell Derived β-cells in Immune Competent mice |
title_fullStr | Long term Glycemic Control Using Polymer Encapsulated, Human Stem-Cell Derived β-cells in Immune Competent mice |
title_full_unstemmed | Long term Glycemic Control Using Polymer Encapsulated, Human Stem-Cell Derived β-cells in Immune Competent mice |
title_short | Long term Glycemic Control Using Polymer Encapsulated, Human Stem-Cell Derived β-cells in Immune Competent mice |
title_sort | long term glycemic control using polymer encapsulated, human stem-cell derived β-cells in immune competent mice |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4825868/ https://www.ncbi.nlm.nih.gov/pubmed/26808346 http://dx.doi.org/10.1038/nm.4030 |
work_keys_str_mv | AT vegasarturoj longtermglycemiccontrolusingpolymerencapsulatedhumanstemcellderivedbcellsinimmunecompetentmice AT veisehomid longtermglycemiccontrolusingpolymerencapsulatedhumanstemcellderivedbcellsinimmunecompetentmice AT gurtlermads longtermglycemiccontrolusingpolymerencapsulatedhumanstemcellderivedbcellsinimmunecompetentmice AT millmanjeffreyr longtermglycemiccontrolusingpolymerencapsulatedhumanstemcellderivedbcellsinimmunecompetentmice AT pagliucafeliciaw longtermglycemiccontrolusingpolymerencapsulatedhumanstemcellderivedbcellsinimmunecompetentmice AT baderandrewr longtermglycemiccontrolusingpolymerencapsulatedhumanstemcellderivedbcellsinimmunecompetentmice AT doloffjoshuac longtermglycemiccontrolusingpolymerencapsulatedhumanstemcellderivedbcellsinimmunecompetentmice AT lijie longtermglycemiccontrolusingpolymerencapsulatedhumanstemcellderivedbcellsinimmunecompetentmice AT chenmichael longtermglycemiccontrolusingpolymerencapsulatedhumanstemcellderivedbcellsinimmunecompetentmice AT olejnikkarsten longtermglycemiccontrolusingpolymerencapsulatedhumanstemcellderivedbcellsinimmunecompetentmice AT tamhokhei longtermglycemiccontrolusingpolymerencapsulatedhumanstemcellderivedbcellsinimmunecompetentmice AT jhunjhunwalasiddharth longtermglycemiccontrolusingpolymerencapsulatedhumanstemcellderivedbcellsinimmunecompetentmice AT langanerin longtermglycemiccontrolusingpolymerencapsulatedhumanstemcellderivedbcellsinimmunecompetentmice AT arestadasilvastephanie longtermglycemiccontrolusingpolymerencapsulatedhumanstemcellderivedbcellsinimmunecompetentmice AT gandhamsrujan longtermglycemiccontrolusingpolymerencapsulatedhumanstemcellderivedbcellsinimmunecompetentmice AT mcgarriglejames longtermglycemiccontrolusingpolymerencapsulatedhumanstemcellderivedbcellsinimmunecompetentmice AT bochenekmatthewa longtermglycemiccontrolusingpolymerencapsulatedhumanstemcellderivedbcellsinimmunecompetentmice AT hollisterlockjennifer longtermglycemiccontrolusingpolymerencapsulatedhumanstemcellderivedbcellsinimmunecompetentmice AT oberholzerjose longtermglycemiccontrolusingpolymerencapsulatedhumanstemcellderivedbcellsinimmunecompetentmice AT greinerdalel longtermglycemiccontrolusingpolymerencapsulatedhumanstemcellderivedbcellsinimmunecompetentmice AT weirgordonc longtermglycemiccontrolusingpolymerencapsulatedhumanstemcellderivedbcellsinimmunecompetentmice AT meltondouglasa longtermglycemiccontrolusingpolymerencapsulatedhumanstemcellderivedbcellsinimmunecompetentmice AT langerrobert longtermglycemiccontrolusingpolymerencapsulatedhumanstemcellderivedbcellsinimmunecompetentmice AT andersondanielg longtermglycemiccontrolusingpolymerencapsulatedhumanstemcellderivedbcellsinimmunecompetentmice |