Cargando…

TRPM7 and its role in neurodegenerative diseases

Calcium (Ca(2+)) and magnesium (Mg(2+)) ions have been shown to play an important role in regulating various neuronal functions. In the present review we focus on the emerging role of transient potential melastatin-7 (TRPM7) channel in not only regulating Ca(2+) and Mg(2+) homeostasis necessary for...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Yuyang, Sukumaran, Pramod, Schaar, Anne, Singh, Brij B
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4826135/
https://www.ncbi.nlm.nih.gov/pubmed/26218331
http://dx.doi.org/10.1080/19336950.2015.1075675
Descripción
Sumario:Calcium (Ca(2+)) and magnesium (Mg(2+)) ions have been shown to play an important role in regulating various neuronal functions. In the present review we focus on the emerging role of transient potential melastatin-7 (TRPM7) channel in not only regulating Ca(2+) and Mg(2+) homeostasis necessary for biological functions, but also how alterations in TRPM7 function/expression could induce neurodegeneration. Although eight TRPM channels have been identified, the channel properties, mode of activation, and physiological responses of various TRPM channels are quite distinct. Among the known 8 TRPM channels only TRPM6 and TRPM7 channels are highly permeable to both Ca(2+) and Mg(2+); however here we will only focus on TRPM7 as unlike TRPM6, TRPM7 channels are abundantly expressed in neuronal cells. Importantly, the discrepancy in TRPM7 channel function and expression leads to various neuronal diseases such as Alzheimer disease (AD) and Parkinson disease (PD). Further, it is emerging as a key factor in anoxic neuronal death and in other neurodegenerative disorders. Thus, by understanding the precise involvement of the TRPM7 channels in different neurodegenerative diseases and by understanding the factors that regulate TRPM7 channels, we could uncover new strategies in the future that could evolve as new drug therapeutic targets for effective treatment of these neurodegenerative diseases.