Cargando…
Identification of ovarian cancer subtype-specific network modules and candidate drivers through an integrative genomics approach
Identification of cancer subtypes and associated molecular drivers is critically important for understanding tumor heterogeneity and seeking effective clinical treatment. In this study, we introduced a simple but efficient multistep procedure to define ovarian cancer types and identify core networks...
Autores principales: | Zhang, Di, Chen, Peng, Zheng, Chun-Hou, Xia, Junfeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4826206/ https://www.ncbi.nlm.nih.gov/pubmed/26735889 http://dx.doi.org/10.18632/oncotarget.6774 |
Ejemplares similares
-
LNDriver: identifying driver genes by integrating mutation and expression data based on gene-gene interaction network
por: Wei, Pi-Jing, et al.
Publicado: (2016) -
The Integrative Method Based on the Module-Network for Identifying Driver Genes in Cancer Subtypes
por: Lu, Xinguo, et al.
Publicado: (2018) -
Identification of driver genes based on gene mutational effects and network centrality
por: Tang, Yun-Yun, et al.
Publicado: (2021) -
Identification of Common Driver Gene Modules and Associations between Cancers through Integrated Network Analysis
por: Gao, Bo, et al.
Publicado: (2021) -
Identification of Driver Genes and miRNAs in Ovarian Cancer through an Integrated In-Silico Approach
por: Beg, Anam, et al.
Publicado: (2023)