Cargando…

Stochastic block coordinate Frank-Wolfe algorithm for large-scale biological network alignment

With increasingly “big” data available in biomedical research, deriving accurate and reproducible biology knowledge from such big data imposes enormous computational challenges. In this paper, motivated by recently developed stochastic block coordinate algorithms, we propose a highly scalable random...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yijie, Qian, Xiaoning
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4826425/
https://www.ncbi.nlm.nih.gov/pubmed/27110234
http://dx.doi.org/10.1186/s13637-016-0041-1
Descripción
Sumario:With increasingly “big” data available in biomedical research, deriving accurate and reproducible biology knowledge from such big data imposes enormous computational challenges. In this paper, motivated by recently developed stochastic block coordinate algorithms, we propose a highly scalable randomized block coordinate Frank-Wolfe algorithm for convex optimization with general compact convex constraints, which has diverse applications in analyzing biomedical data for better understanding cellular and disease mechanisms. We focus on implementing the derived stochastic block coordinate algorithm to align protein-protein interaction networks for identifying conserved functional pathways based on the IsoRank framework. Our derived stochastic block coordinate Frank-Wolfe (SBCFW) algorithm has the convergence guarantee and naturally leads to the decreased computational cost (time and space) for each iteration. Our experiments for querying conserved functional protein complexes in yeast networks confirm the effectiveness of this technique for analyzing large-scale biological networks.