Cargando…
Genetic engineering of Synechocystis PCC6803 for the photoautotrophic production of the sweetener erythritol
BACKGROUND: Erythritol is a polyol that is used in the food and beverage industry. Due to its non-caloric and non-cariogenic properties, the popularity of this sweetener is increasing. Large scale production of erythritol is currently based on conversion of glucose by selected fungi. In this study,...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4826498/ https://www.ncbi.nlm.nih.gov/pubmed/27059824 http://dx.doi.org/10.1186/s12934-016-0458-y |
Sumario: | BACKGROUND: Erythritol is a polyol that is used in the food and beverage industry. Due to its non-caloric and non-cariogenic properties, the popularity of this sweetener is increasing. Large scale production of erythritol is currently based on conversion of glucose by selected fungi. In this study, we describe a biotechnological process to produce erythritol from light and CO(2), using engineered Synechocystis sp. PCC6803. METHODS: By functionally expressing codon-optimized genes encoding the erythrose-4-phosphate phosphatase TM1254 and the erythrose reductase Gcy1p, or GLD1, this cyanobacterium can directly convert the Calvin cycle intermediate erythrose-4-phosphate into erythritol via a two-step process and release the polyol sugar in the extracellular medium. Further modifications targeted enzyme expression and pathway intermediates. CONCLUSIONS: After several optimization steps, the best strain, SEP024, produced up to 2.1 mM (256 mg/l) erythritol, excreted in the medium. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12934-016-0458-y) contains supplementary material, which is available to authorized users. |
---|