Cargando…
Machine learning approaches for discerning intercorrelation of hematological parameters and glucose level for identification of diabetes mellitus
Background: The aim of this study is to explore the relationship between hematological parameters and glycemic status in the establishment of quantitative population-health relationship (QPHR) model for identifying individuals with or without diabetes mellitus (DM). Methods: A cross-sectional invest...
Autores principales: | Worachartcheewan, Apilak, Nantasenamat, Chanin, Prasertsrithong, Pisit, Amranan, Jakraphob, Monnor, Teerawat, Chaisatit, Tassaneya, Nuchpramool, Wilairat, Prachayasittikul, Virapong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Leibniz Research Centre for Working Environment and Human Factors
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4827074/ https://www.ncbi.nlm.nih.gov/pubmed/27092034 |
Ejemplares similares
-
Data mining for the identification of metabolic syndrome status
por: Worachartcheewan, Apilak, et al.
Publicado: (2018) -
Probing the origins of aromatase inhibitory activity of disubstituted coumarins via QSAR and molecular docking
por: Worachartcheewan, Apilak, et al.
Publicado: (2014) -
Classification of P-glycoprotein-interacting compounds using machine learning methods
por: Prachayasittikul, Veda, et al.
Publicado: (2015) -
Quantitative population-health relationship (QPHR) for assessing metabolic syndrome
por: Worachartcheewan, Apilak, et al.
Publicado: (2013) -
Elucidating the Structure-Activity Relationships of the Vasorelaxation and Antioxidation Properties of Thionicotinic Acid Derivatives
por: Prachayasittikul, Supaluk, et al.
Publicado: (2010)