Cargando…
Unbiased Prediction and Feature Selection in High-Dimensional Survival Regression
With widespread availability of omics profiling techniques, the analysis and interpretation of high-dimensional omics data, for example, for biomarkers, is becoming an increasingly important part of clinical medicine because such datasets constitute a promising resource for predicting survival outco...
Autores principales: | Laimighofer, Michael, Krumsiek, Jan, Buettner, Florian, Theis, Fabian J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Mary Ann Liebert, Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4827277/ https://www.ncbi.nlm.nih.gov/pubmed/26894327 http://dx.doi.org/10.1089/cmb.2015.0192 |
Ejemplares similares
-
Unbiased Feature Selection in Learning Random Forests for High-Dimensional Data
por: Nguyen, Thanh-Tung, et al.
Publicado: (2015) -
A strategy for high‐dimensional multivariable analysis classifies childhood asthma phenotypes from genetic, immunological, and environmental factors
por: Krautenbacher, Norbert, et al.
Publicado: (2019) -
Statistical methods for the analysis of high-throughput metabolomics data
por: Bartel, Jörg, et al.
Publicado: (2013) -
Correlation‐adjusted regression survival scores for high‐dimensional variable selection
por: Welchowski, Thomas, et al.
Publicado: (2019) -
Common patterns of gene regulation associated with Cesarean section and the development of islet autoimmunity – indications of immune cell activation
por: Laimighofer, M., et al.
Publicado: (2019)