Cargando…
Myristic acid hitchhiking on sigma-1 receptor to fend off neurodegeneration
Neurodegenerative diseases are linked to tauopathy as a result of cyclin dependent kinase 5 (cdk5) binding to its p25 activator instead of its p35 activator and becoming over-activated. The overactive complex stimulates the hyperphosphorylation of tau proteins, leading to neurofibrillary tangles (NF...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4827442/ https://www.ncbi.nlm.nih.gov/pubmed/27077074 http://dx.doi.org/10.14800/rci.1114 |
Sumario: | Neurodegenerative diseases are linked to tauopathy as a result of cyclin dependent kinase 5 (cdk5) binding to its p25 activator instead of its p35 activator and becoming over-activated. The overactive complex stimulates the hyperphosphorylation of tau proteins, leading to neurofibrillary tangles (NFTs) and stunting axon growth and development. It is known that the sigma-1 receptor (Sig-1R), an endoplasmic reticulum chaperone, can be involved in axon growth by promoting neurite sprouting through nerve growth factor (NGF) and tropomyosin receptor kinase B (TrkB)([1, 2]). It has also been previously demonstrated that a Sig-1R deficiency impairs the process of neurogenesis by causing a down-regulation of N-methyl-D-aspartate receptors (NMDARs)([3]). The recent study by Tsai et al. sought to understand the relationship between Sig-1R and tauopathy([4]). It was discovered that the Sig-1R helps maintain proper tau phosphorylation and axon development by facilitating p35 myristoylation and promoting p35 turnover. Neurons that had the Sig-1R knocked down exhibited shortened axons and higher levels of phosphorylated tau proteins compared to control neurons. Here we discuss these recent findings on the role of Sig-1R in tauopathy and highlight the newly presented physiological consequences of the Sig-1R-lipid interaction, helping to understand the close relationship between lipids and neurodegeneration. |
---|