Cargando…

Crowding and Anomalous Capacitance at an Electrode–Ionic Liquid Interface Observed Using Operando X-ray Scattering

[Image: see text] Room temperature ionic liquids are widely recognized as novel electrolytes with properties very different from those of aqueous solutions, and thus with many potential applications, but observing how they actually behave at electrolytic interfaces has proved to be challenging. We h...

Descripción completa

Detalles Bibliográficos
Autores principales: Chu, Miaoqi, Miller, Mitchell, Dutta, Pulak
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2016
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4827468/
https://www.ncbi.nlm.nih.gov/pubmed/27163044
http://dx.doi.org/10.1021/acscentsci.6b00014
Descripción
Sumario:[Image: see text] Room temperature ionic liquids are widely recognized as novel electrolytes with properties very different from those of aqueous solutions, and thus with many potential applications, but observing how they actually behave at electrolytic interfaces has proved to be challenging. We have studied the voltage-dependent structure of [TDTHP](+)[NTF(2)](−) near its interface with an electrode, using in situ synchrotron X-ray reflectivity. An anion-rich layer develops at the interface above a threshold voltage of +1.75 V, and the layer thickness increases rapidly with voltage, reaching ∼6 nm (much larger that the anion dimensions) at +2.64 V. These results provide direct confirmation of the theoretical prediction of “crowding” of ions near the interface. The interfacial layer is not purely anionic but a mixture of up to ∼80% anions and the rest cations. The static differential capacitance calculated from X-ray measurements shows an increase at higher voltages, consistent with a recent zero-frequency capacitance measurement but inconsistent with ac capacitance measurements.