Cargando…
Modeling Epoxidation of Drug-like Molecules with a Deep Machine Learning Network
[Image: see text] Drug toxicity is frequently caused by electrophilic reactive metabolites that covalently bind to proteins. Epoxides comprise a large class of three-membered cyclic ethers. These molecules are electrophilic and typically highly reactive due to ring tension and polarized carbon–oxyge...
Autores principales: | Hughes, Tyler B., Miller, Grover P., Swamidass, S. Joshua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2015
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4827534/ https://www.ncbi.nlm.nih.gov/pubmed/27162970 http://dx.doi.org/10.1021/acscentsci.5b00131 |
Ejemplares similares
-
Modeling Reactivity to Biological Macromolecules with
a Deep Multitask Network
por: Hughes, Tyler B., et al.
Publicado: (2016) -
Machine learning liver-injuring drug interactions with non-steroidal anti-inflammatory drugs (NSAIDs) from a retrospective electronic health record (EHR) cohort
por: Datta, Arghya, et al.
Publicado: (2021) -
Editorial: Advancements in computational studies of drug toxicity
por: Flynn, Noah R., et al.
Publicado: (2023) -
Development and Validation of a Deep Learning Model to Quantify Glomerulosclerosis in Kidney Biopsy Specimens
por: Marsh, Jon N., et al.
Publicado: (2021) -
Large scale study of multiple-molecule queries
por: Nasr, Ramzi J, et al.
Publicado: (2009)