Cargando…
Hyaluronan-conjugated liposomes encapsulating gemcitabine for breast cancer stem cells
Investigation of potential therapeutics for targeting breast cancer stem cells (BCSCs) is important because these cells are regarded as culprit of breast cancer relapse. Accomplishing this kind of strategy requires a specific drug-delivery system using the distinct features of liposomes. Studies on...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4827594/ https://www.ncbi.nlm.nih.gov/pubmed/27103799 http://dx.doi.org/10.2147/IJN.S95850 |
_version_ | 1782426489315131392 |
---|---|
author | Han, Na-Kyung Shin, Dae Hwan Kim, Jung Seok Weon, Kwon Yeon Jang, Chang-Young Kim, Jin-Seok |
author_facet | Han, Na-Kyung Shin, Dae Hwan Kim, Jung Seok Weon, Kwon Yeon Jang, Chang-Young Kim, Jin-Seok |
author_sort | Han, Na-Kyung |
collection | PubMed |
description | Investigation of potential therapeutics for targeting breast cancer stem cells (BCSCs) is important because these cells are regarded as culprit of breast cancer relapse. Accomplishing this kind of strategy requires a specific drug-delivery system using the distinct features of liposomes. Studies on targeted liposomal delivery systems have indicated the conjugation of hyaluronan (HA), a primary ligand for CD44 surface markers, as an appropriate method for targeting BCSCs. For this study, enriched BCSCs were obtained by culturing MCF-7 breast cancer cells in nonadherent conditions. The enriched BCSCs were challenged with HA-conjugated liposomes encapsulating gemcitabine (2, 2-difluoro-2-deoxycytidine, GEM). In vitro study showed that the HA-conjugated liposomes significantly enhanced the cytotoxicity, anti-migration, and anti-colony formation abilities of GEM through targeting of CD44 expressed on BCSCs. In pharmacokinetic study, area under the drug concentration vs time curve (AUC) of the immunoliposomal GEM was 3.5 times higher than that of free GEM, indicating that the HA-conjugated liposomes enhanced the stability of GEM in the bloodstream and therefore prolonged its half-life time. The antitumor effect of the immunoliposomal GEM was 3.3 times higher than that of free GEM in a xenograft mouse model, probably reflecting the unique targeting of the CD44 receptor by HA and the increased cytotoxicity and stability through the liposomal formulation. Furthermore, marginal change in body weight demonstrated that the use of liposomes considerably reduced the systemic toxicity of GEM on normal healthy cells. Taken together, this study demonstrates that HA-conjugated liposomes encapsulating GEM show promise for the therapy of breast cancer in vitro and in a xenograft model by targeting the BCSCs. |
format | Online Article Text |
id | pubmed-4827594 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Dove Medical Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-48275942016-04-21 Hyaluronan-conjugated liposomes encapsulating gemcitabine for breast cancer stem cells Han, Na-Kyung Shin, Dae Hwan Kim, Jung Seok Weon, Kwon Yeon Jang, Chang-Young Kim, Jin-Seok Int J Nanomedicine Original Research Investigation of potential therapeutics for targeting breast cancer stem cells (BCSCs) is important because these cells are regarded as culprit of breast cancer relapse. Accomplishing this kind of strategy requires a specific drug-delivery system using the distinct features of liposomes. Studies on targeted liposomal delivery systems have indicated the conjugation of hyaluronan (HA), a primary ligand for CD44 surface markers, as an appropriate method for targeting BCSCs. For this study, enriched BCSCs were obtained by culturing MCF-7 breast cancer cells in nonadherent conditions. The enriched BCSCs were challenged with HA-conjugated liposomes encapsulating gemcitabine (2, 2-difluoro-2-deoxycytidine, GEM). In vitro study showed that the HA-conjugated liposomes significantly enhanced the cytotoxicity, anti-migration, and anti-colony formation abilities of GEM through targeting of CD44 expressed on BCSCs. In pharmacokinetic study, area under the drug concentration vs time curve (AUC) of the immunoliposomal GEM was 3.5 times higher than that of free GEM, indicating that the HA-conjugated liposomes enhanced the stability of GEM in the bloodstream and therefore prolonged its half-life time. The antitumor effect of the immunoliposomal GEM was 3.3 times higher than that of free GEM in a xenograft mouse model, probably reflecting the unique targeting of the CD44 receptor by HA and the increased cytotoxicity and stability through the liposomal formulation. Furthermore, marginal change in body weight demonstrated that the use of liposomes considerably reduced the systemic toxicity of GEM on normal healthy cells. Taken together, this study demonstrates that HA-conjugated liposomes encapsulating GEM show promise for the therapy of breast cancer in vitro and in a xenograft model by targeting the BCSCs. Dove Medical Press 2016-04-05 /pmc/articles/PMC4827594/ /pubmed/27103799 http://dx.doi.org/10.2147/IJN.S95850 Text en © 2016 Han et al. This work is published and licensed by Dove Medical Press Limited The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. |
spellingShingle | Original Research Han, Na-Kyung Shin, Dae Hwan Kim, Jung Seok Weon, Kwon Yeon Jang, Chang-Young Kim, Jin-Seok Hyaluronan-conjugated liposomes encapsulating gemcitabine for breast cancer stem cells |
title | Hyaluronan-conjugated liposomes encapsulating gemcitabine for breast cancer stem cells |
title_full | Hyaluronan-conjugated liposomes encapsulating gemcitabine for breast cancer stem cells |
title_fullStr | Hyaluronan-conjugated liposomes encapsulating gemcitabine for breast cancer stem cells |
title_full_unstemmed | Hyaluronan-conjugated liposomes encapsulating gemcitabine for breast cancer stem cells |
title_short | Hyaluronan-conjugated liposomes encapsulating gemcitabine for breast cancer stem cells |
title_sort | hyaluronan-conjugated liposomes encapsulating gemcitabine for breast cancer stem cells |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4827594/ https://www.ncbi.nlm.nih.gov/pubmed/27103799 http://dx.doi.org/10.2147/IJN.S95850 |
work_keys_str_mv | AT hannakyung hyaluronanconjugatedliposomesencapsulatinggemcitabineforbreastcancerstemcells AT shindaehwan hyaluronanconjugatedliposomesencapsulatinggemcitabineforbreastcancerstemcells AT kimjungseok hyaluronanconjugatedliposomesencapsulatinggemcitabineforbreastcancerstemcells AT weonkwonyeon hyaluronanconjugatedliposomesencapsulatinggemcitabineforbreastcancerstemcells AT jangchangyoung hyaluronanconjugatedliposomesencapsulatinggemcitabineforbreastcancerstemcells AT kimjinseok hyaluronanconjugatedliposomesencapsulatinggemcitabineforbreastcancerstemcells |