Cargando…
Flow Cytometry-Based Classification in Cancer Research: A View on Feature Selection
In this paper, we study the problem of feature selection in cancer-related machine learning tasks. In particular, we study the accuracy and stability of different feature selection approaches within simplistic machine learning pipelines. Earlier studies have shown that for certain cases, the accurac...
Autores principales: | Hassan, S. Sakira, Ruusuvuori, Pekka, Latonen, Leena, Huttunen, Heikki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Libertas Academica
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4827794/ https://www.ncbi.nlm.nih.gov/pubmed/27081305 http://dx.doi.org/10.4137/CIN.S30795 |
Ejemplares similares
-
Convolutional Neural Network-Based Artificial Intelligence for Classification of Protein Localization Patterns
por: Liimatainen, Kaisa, et al.
Publicado: (2021) -
Feature-based analysis of mouse prostatic intraepithelial neoplasia in histological tissue sections
por: Ruusuvuori, Pekka, et al.
Publicado: (2016) -
Virtual reality for 3D histology: multi-scale visualization of organs with interactive feature exploration
por: Liimatainen, Kaisa, et al.
Publicado: (2021) -
Iterative unsupervised domain adaptation for generalized cell detection from brightfield z-stacks
por: Liimatainen, Kaisa, et al.
Publicado: (2019) -
The effect of neural network architecture on virtual H&E staining: Systematic assessment of histological feasibility
por: Khan, Umair, et al.
Publicado: (2023)