Cargando…
Procedure for Detecting Outliers in a Circular Regression Model
A number of circular regression models have been proposed in the literature. In recent years, there is a strong interest shown on the subject of outlier detection in circular regression. An outlier detection procedure can be developed by defining a new statistic in terms of the circular residuals. I...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4827829/ https://www.ncbi.nlm.nih.gov/pubmed/27064566 http://dx.doi.org/10.1371/journal.pone.0153074 |
Sumario: | A number of circular regression models have been proposed in the literature. In recent years, there is a strong interest shown on the subject of outlier detection in circular regression. An outlier detection procedure can be developed by defining a new statistic in terms of the circular residuals. In this paper, we propose a new measure which transforms the circular residuals into linear measures using a trigonometric function. We then employ the row deletion approach to identify observations that affect the measure the most, a candidate of outlier. The corresponding cut-off points and the performance of the detection procedure when applied on Down and Mardia’s model are studied via simulations. For illustration, we apply the procedure on circadian data. |
---|