Cargando…

Probing the nanoadhesion of Streptococcus sanguinis to titanium implant surfaces by atomic force microscopy

As titanium (Ti) continues to be utilized in great extent for the fabrication of artificial implants, it is important to understand the crucial bacterium–Ti interaction occurring during the initial phases of biofilm formation. By employing a single-cell force spectroscopy technique, the nanoadhesive...

Descripción completa

Detalles Bibliográficos
Autores principales: Aguayo, Sebastian, Donos, Nikolaos, Spratt, Dave, Bozec, Laurent
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove Medical Press 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4827898/
https://www.ncbi.nlm.nih.gov/pubmed/27103802
http://dx.doi.org/10.2147/IJN.S100768
Descripción
Sumario:As titanium (Ti) continues to be utilized in great extent for the fabrication of artificial implants, it is important to understand the crucial bacterium–Ti interaction occurring during the initial phases of biofilm formation. By employing a single-cell force spectroscopy technique, the nanoadhesive interactions between the early-colonizing Streptococcus sanguinis and a clinically analogous smooth Ti substrate were explored. Mean adhesion forces between S. sanguinis and Ti were found to be 0.32±0.00, 1.07±0.06, and 4.85±0.56 nN for 0, 1, and 60 seconds contact times, respectively; while adhesion work values were reported at 19.28±2.38, 104.60±7.02, and 1,317.26±197.69 aJ for 0, 1, and 60 seconds, respectively. At 60 seconds surface delays, minor-rupture events were modeled with the worm-like chain model yielding an average contour length of 668±12 nm. The mean force for S. sanguinis minor-detachment events was 1.84±0.64 nN, and Poisson analysis decoupled this value into a short-range force component of −1.60±0.34 nN and a long-range force component of −0.55±0.47 nN. Furthermore, a solution of 2 mg/mL chlorhexidine was found to increase adhesion between the bacterial probe and substrate. Overall, single-cell force spectroscopy of living S. sanguinis cells proved to be a reliable way to characterize early-bacterial adhesion onto machined Ti implant surfaces at the nanoscale.