Cargando…

Cytoprotective effects of cerium and selenium nanoparticles on heat-shocked human dermal fibroblasts: an in vitro evaluation

It is a widely accepted fact that environmental factors affect cells by modulating the components of subcellular compartments and altering metabolic enzymes. Factors (such as oxidative stress and heat-shock-induced proteins and heat shock factors, which upregulate stress-response related genes to pr...

Descripción completa

Detalles Bibliográficos
Autores principales: Yuan, Bo, Webster, Thomas J, Roy, Amit K
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove Medical Press 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4827915/
https://www.ncbi.nlm.nih.gov/pubmed/27103800
http://dx.doi.org/10.2147/IJN.S104082
Descripción
Sumario:It is a widely accepted fact that environmental factors affect cells by modulating the components of subcellular compartments and altering metabolic enzymes. Factors (such as oxidative stress and heat-shock-induced proteins and heat shock factors, which upregulate stress-response related genes to protect affected cells) are commonly altered during changes in environmental conditions. Studies by our group and others have shown that nanoparticles (NPs) are able to efficiently attenuate oxidative stress by penetrating into specific tissues or organs. Such findings warrant further investigation on the effects of NPs on heat-shock-induced stress, specifically in cells in the presence or absence (pretreated) of NPs. Here, we examined the cytoprotective effects of two different NPs (cerium and selenium) on heat-induced cell death for a model cell using dermal fibroblasts. We report for the first time that both ceria and selenium NPs (at 500 µg/mL) possess stress-relieving behavior on fibroblasts undergoing heat shock. Such results indicate the need to further develop these NPs as a novel treatment for heat shock.