Cargando…

RNAi Trigger Delivery into Anopheles gambiae Pupae

RNA interference (RNAi), a naturally occurring phenomenon in eukaryotic organisms, is an extremely valuable tool that can be utilized in the laboratory for functional genomic studies. The ability to knockdown individual genes selectively via this reverse genetic technique has allowed many researcher...

Descripción completa

Detalles Bibliográficos
Autores principales: Regna, Kimberly, Harrison, Rachel M., Heyse, Shannon A., Chiles, Thomas C., Michel, Kristin, Muskavitch, Marc A. T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MyJove Corporation 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4828232/
https://www.ncbi.nlm.nih.gov/pubmed/27023367
http://dx.doi.org/10.3791/53738
_version_ 1782426548677115904
author Regna, Kimberly
Harrison, Rachel M.
Heyse, Shannon A.
Chiles, Thomas C.
Michel, Kristin
Muskavitch, Marc A. T.
author_facet Regna, Kimberly
Harrison, Rachel M.
Heyse, Shannon A.
Chiles, Thomas C.
Michel, Kristin
Muskavitch, Marc A. T.
author_sort Regna, Kimberly
collection PubMed
description RNA interference (RNAi), a naturally occurring phenomenon in eukaryotic organisms, is an extremely valuable tool that can be utilized in the laboratory for functional genomic studies. The ability to knockdown individual genes selectively via this reverse genetic technique has allowed many researchers to rapidly uncover the biological roles of numerous genes within many organisms, by evaluation of loss-of-function phenotypes. In the major human malaria vector Anopheles gambiae, the predominant method used to reduce the function of targeted genes involves injection of double-stranded (dsRNA) into the hemocoel of the adult mosquito. While this method has been successful, gene knockdown in adults excludes the functional assessment of genes that are expressed and potentially play roles during pre-adult stages, as well as genes that are expressed in limited numbers of cells in adult mosquitoes. We describe a method for the injection of Serine Protease Inhibitor 2 (SRPN2) dsRNA during the early pupal stage and validate SRPN2 protein knockdown by observing decreased target protein levels and the formation of melanotic pseudo-tumors in SRPN2 knockdown adult mosquitoes. This evident phenotype has been described previously for adult stage knockdown of SRPN2 function, and we have recapitulated this adult phenotype by SRPN2 knockdown initiated during pupal development. When used in conjunction with a dye-labeled dsRNA solution, this technique enables easy visualization by simple light microscopy of injection quality and distribution of dsRNA in the hemocoel.
format Online
Article
Text
id pubmed-4828232
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher MyJove Corporation
record_format MEDLINE/PubMed
spelling pubmed-48282322016-04-22 RNAi Trigger Delivery into Anopheles gambiae Pupae Regna, Kimberly Harrison, Rachel M. Heyse, Shannon A. Chiles, Thomas C. Michel, Kristin Muskavitch, Marc A. T. J Vis Exp Infection RNA interference (RNAi), a naturally occurring phenomenon in eukaryotic organisms, is an extremely valuable tool that can be utilized in the laboratory for functional genomic studies. The ability to knockdown individual genes selectively via this reverse genetic technique has allowed many researchers to rapidly uncover the biological roles of numerous genes within many organisms, by evaluation of loss-of-function phenotypes. In the major human malaria vector Anopheles gambiae, the predominant method used to reduce the function of targeted genes involves injection of double-stranded (dsRNA) into the hemocoel of the adult mosquito. While this method has been successful, gene knockdown in adults excludes the functional assessment of genes that are expressed and potentially play roles during pre-adult stages, as well as genes that are expressed in limited numbers of cells in adult mosquitoes. We describe a method for the injection of Serine Protease Inhibitor 2 (SRPN2) dsRNA during the early pupal stage and validate SRPN2 protein knockdown by observing decreased target protein levels and the formation of melanotic pseudo-tumors in SRPN2 knockdown adult mosquitoes. This evident phenotype has been described previously for adult stage knockdown of SRPN2 function, and we have recapitulated this adult phenotype by SRPN2 knockdown initiated during pupal development. When used in conjunction with a dye-labeled dsRNA solution, this technique enables easy visualization by simple light microscopy of injection quality and distribution of dsRNA in the hemocoel. MyJove Corporation 2016-03-08 /pmc/articles/PMC4828232/ /pubmed/27023367 http://dx.doi.org/10.3791/53738 Text en Copyright © 2016, Journal of Visualized Experiments http://creativecommons.org/licenses/by-nc-nd/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visithttp://creativecommons.org/licenses/by-nc-nd/3.0/
spellingShingle Infection
Regna, Kimberly
Harrison, Rachel M.
Heyse, Shannon A.
Chiles, Thomas C.
Michel, Kristin
Muskavitch, Marc A. T.
RNAi Trigger Delivery into Anopheles gambiae Pupae
title RNAi Trigger Delivery into Anopheles gambiae Pupae
title_full RNAi Trigger Delivery into Anopheles gambiae Pupae
title_fullStr RNAi Trigger Delivery into Anopheles gambiae Pupae
title_full_unstemmed RNAi Trigger Delivery into Anopheles gambiae Pupae
title_short RNAi Trigger Delivery into Anopheles gambiae Pupae
title_sort rnai trigger delivery into anopheles gambiae pupae
topic Infection
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4828232/
https://www.ncbi.nlm.nih.gov/pubmed/27023367
http://dx.doi.org/10.3791/53738
work_keys_str_mv AT regnakimberly rnaitriggerdeliveryintoanophelesgambiaepupae
AT harrisonrachelm rnaitriggerdeliveryintoanophelesgambiaepupae
AT heyseshannona rnaitriggerdeliveryintoanophelesgambiaepupae
AT chilesthomasc rnaitriggerdeliveryintoanophelesgambiaepupae
AT michelkristin rnaitriggerdeliveryintoanophelesgambiaepupae
AT muskavitchmarcat rnaitriggerdeliveryintoanophelesgambiaepupae