Cargando…

Effects of long-term salicylate administration on synaptic ultrastructure and metabolic activity in the rat CNS

Tinnitus is associated with neural hyperactivity in the central nervous system (CNS). Salicylate is a well-known ototoxic drug, and we induced tinnitus in rats using a model of long-term salicylate administration. The gap pre-pulse inhibition of acoustic startle test was used to infer tinnitus perce...

Descripción completa

Detalles Bibliográficos
Autores principales: Yi, Bin, Hu, Shousen, Zuo, Chuantao, Jiao, Fangyang, Lv, Jingrong, Chen, Dongye, Ma, Yufei, Chen, Jianyong, Mei, Ling, Wang, Xueling, Huang, Zhiwu, Wu, Hao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4828705/
https://www.ncbi.nlm.nih.gov/pubmed/27068004
http://dx.doi.org/10.1038/srep24428
Descripción
Sumario:Tinnitus is associated with neural hyperactivity in the central nervous system (CNS). Salicylate is a well-known ototoxic drug, and we induced tinnitus in rats using a model of long-term salicylate administration. The gap pre-pulse inhibition of acoustic startle test was used to infer tinnitus perception, and only rats in the chronic salicylate-treatment (14 days) group showed evidence of experiencing tinnitus. After small animal positron emission tomography scans were performed, we found that the metabolic activity of the inferior colliculus (IC), the auditory cortex (AC), and the hippocampus (HP) were significantly higher in the chronic treatment group compared with saline group (treated for 14 days), which was further supported by ultrastructural changes at the synapses. The alterations all returned to baseline 14 days after the cessation of salicylate-treatment (wash-out group), indicating that these changes were reversible. These findings indicate that long-term salicylate administration induces tinnitus, enhanced neural activity and synaptic ultrastructural changes in the IC, AC, and HP of rats due to neuroplasticity. Thus, an increased metabolic rate and synaptic transmission in specific areas of the CNS may contribute to the development of tinnitus.