Cargando…

Does larch arabinogalactan enhance immune function? A review of mechanistic and clinical trials

The common cold is a viral infection with important economic burdens in Western countries. The research and development of nutritional solutions to reduce the incidence and severity of colds today is a major focus of interest, and larch arabinogalactan seems to be a promising supportive agent. Arabi...

Descripción completa

Detalles Bibliográficos
Autores principales: Dion, Carine, Chappuis, Eric, Ripoll, Christophe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4828828/
https://www.ncbi.nlm.nih.gov/pubmed/27073407
http://dx.doi.org/10.1186/s12986-016-0086-x
Descripción
Sumario:The common cold is a viral infection with important economic burdens in Western countries. The research and development of nutritional solutions to reduce the incidence and severity of colds today is a major focus of interest, and larch arabinogalactan seems to be a promising supportive agent. Arabinogalactan has been consumed by humans for thousands of years and is found in a variety of common vegetables as well as in medicinal herbs. The major commercial sources of this long, densely branched, high-molecular-weight polysaccharide are North American larch trees. The aim of this article is to review the immunomodulatory effects of larch arabinogalactan derived from Larix laricina and Larix occidentalis (North American Larix species) and more specifically its role in the resistance to common cold infections. In cell and animal models, larch arabinogalactan is capable of enhancing natural killer cells and macrophages as well as the secretion of pro-inflammatory cytokines. In humans a clinical study demonstrated that larch arabinogalactan increased the body’s potential to defend against common cold infection. Larch arabinogalactan decreased the incidence of cold episodes by 23 %. Improvements of serum antigen-specific IgG and IgE response to Streptococcus pneumoniae and tetanus vaccination suggesting a B cell dependent mechanism have been reported in vaccination studies with larch arabinogalactan, while the absence of response following influenza vaccination suggests the involvement of a T cell dependent mechanism. These observations suggest a role for larch arabinogalactan in the improvement of cold infections, although the mode of action remains to be further explored. Different hypotheses can be envisaged as larch arabinogalactan can possibly act indirectly through microbiota-dependent mechanisms and/or have a direct effect on the immune system via the gut-associated lymphoid tissue (GALT).