Cargando…
De novo transcriptome sequencing and gene expression analysis reveal potential mechanisms of seed abortion in dove tree (Davidia involucrata Baill.)
BACKGROUND: Dove tree (Davidia involucrata Baill.) is a rare and endangered species. Natural reproduction of dove tree is extremely difficult due to its low fecundity. Serious seed abortion is one of the key factors restraining its sexual reproduction. Understanding the inducements of seed abortion...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4828838/ https://www.ncbi.nlm.nih.gov/pubmed/27068221 http://dx.doi.org/10.1186/s12870-016-0772-x |
_version_ | 1782426661029937152 |
---|---|
author | Li, Meng Dong, Xujie Peng, Jiqing Xu, Wen Ren, Rui Liu, Jane Cao, Fuxiang Liu, Zhiming |
author_facet | Li, Meng Dong, Xujie Peng, Jiqing Xu, Wen Ren, Rui Liu, Jane Cao, Fuxiang Liu, Zhiming |
author_sort | Li, Meng |
collection | PubMed |
description | BACKGROUND: Dove tree (Davidia involucrata Baill.) is a rare and endangered species. Natural reproduction of dove tree is extremely difficult due to its low fecundity. Serious seed abortion is one of the key factors restraining its sexual reproduction. Understanding the inducements of seed abortion is critical for addressing the issue of offspring production and the survivability of such an endangered species. However, studies on the molecular mechanism of seed abortion in woody plants are lacking, and the dearth of genomic resources for dove tree restricts further research. RESULTS: In this study, using the Illumina platform, we performed de novo transcriptome sequencing of the fruit and seed in dove tree. A total of 149,099 transcripts were isolated and then assembled into 72,885 unigenes. Subsequently, differentially expressed genes (DEGs) between normal and abortive seeds were screened. Genes involved in response to stress, hormone signal transduction, programmed cell death, lignin biosynthesis, and secondary cell wall biogenesis showed significant different expression levels between normal and abortive seeds. CONCLUSION: Combined results indicated that the abortive seeds were under the adversity stress, which should be controlled by the maternal plant. Maternally controlled development of integument is assumed to be a critical process for abortion regulation. MYB and WRKY transcription factors, receptor kinase and laccase are considered to be important regulators in seed abortion. Moreover, mass sequence data facilitated further molecular research on this unique species. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12870-016-0772-x) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4828838 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-48288382016-04-13 De novo transcriptome sequencing and gene expression analysis reveal potential mechanisms of seed abortion in dove tree (Davidia involucrata Baill.) Li, Meng Dong, Xujie Peng, Jiqing Xu, Wen Ren, Rui Liu, Jane Cao, Fuxiang Liu, Zhiming BMC Plant Biol Research Article BACKGROUND: Dove tree (Davidia involucrata Baill.) is a rare and endangered species. Natural reproduction of dove tree is extremely difficult due to its low fecundity. Serious seed abortion is one of the key factors restraining its sexual reproduction. Understanding the inducements of seed abortion is critical for addressing the issue of offspring production and the survivability of such an endangered species. However, studies on the molecular mechanism of seed abortion in woody plants are lacking, and the dearth of genomic resources for dove tree restricts further research. RESULTS: In this study, using the Illumina platform, we performed de novo transcriptome sequencing of the fruit and seed in dove tree. A total of 149,099 transcripts were isolated and then assembled into 72,885 unigenes. Subsequently, differentially expressed genes (DEGs) between normal and abortive seeds were screened. Genes involved in response to stress, hormone signal transduction, programmed cell death, lignin biosynthesis, and secondary cell wall biogenesis showed significant different expression levels between normal and abortive seeds. CONCLUSION: Combined results indicated that the abortive seeds were under the adversity stress, which should be controlled by the maternal plant. Maternally controlled development of integument is assumed to be a critical process for abortion regulation. MYB and WRKY transcription factors, receptor kinase and laccase are considered to be important regulators in seed abortion. Moreover, mass sequence data facilitated further molecular research on this unique species. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12870-016-0772-x) contains supplementary material, which is available to authorized users. BioMed Central 2016-04-12 /pmc/articles/PMC4828838/ /pubmed/27068221 http://dx.doi.org/10.1186/s12870-016-0772-x Text en © Li et al. 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Li, Meng Dong, Xujie Peng, Jiqing Xu, Wen Ren, Rui Liu, Jane Cao, Fuxiang Liu, Zhiming De novo transcriptome sequencing and gene expression analysis reveal potential mechanisms of seed abortion in dove tree (Davidia involucrata Baill.) |
title | De novo transcriptome sequencing and gene expression analysis reveal potential mechanisms of seed abortion in dove tree (Davidia involucrata Baill.) |
title_full | De novo transcriptome sequencing and gene expression analysis reveal potential mechanisms of seed abortion in dove tree (Davidia involucrata Baill.) |
title_fullStr | De novo transcriptome sequencing and gene expression analysis reveal potential mechanisms of seed abortion in dove tree (Davidia involucrata Baill.) |
title_full_unstemmed | De novo transcriptome sequencing and gene expression analysis reveal potential mechanisms of seed abortion in dove tree (Davidia involucrata Baill.) |
title_short | De novo transcriptome sequencing and gene expression analysis reveal potential mechanisms of seed abortion in dove tree (Davidia involucrata Baill.) |
title_sort | de novo transcriptome sequencing and gene expression analysis reveal potential mechanisms of seed abortion in dove tree (davidia involucrata baill.) |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4828838/ https://www.ncbi.nlm.nih.gov/pubmed/27068221 http://dx.doi.org/10.1186/s12870-016-0772-x |
work_keys_str_mv | AT limeng denovotranscriptomesequencingandgeneexpressionanalysisrevealpotentialmechanismsofseedabortionindovetreedavidiainvolucratabaill AT dongxujie denovotranscriptomesequencingandgeneexpressionanalysisrevealpotentialmechanismsofseedabortionindovetreedavidiainvolucratabaill AT pengjiqing denovotranscriptomesequencingandgeneexpressionanalysisrevealpotentialmechanismsofseedabortionindovetreedavidiainvolucratabaill AT xuwen denovotranscriptomesequencingandgeneexpressionanalysisrevealpotentialmechanismsofseedabortionindovetreedavidiainvolucratabaill AT renrui denovotranscriptomesequencingandgeneexpressionanalysisrevealpotentialmechanismsofseedabortionindovetreedavidiainvolucratabaill AT liujane denovotranscriptomesequencingandgeneexpressionanalysisrevealpotentialmechanismsofseedabortionindovetreedavidiainvolucratabaill AT caofuxiang denovotranscriptomesequencingandgeneexpressionanalysisrevealpotentialmechanismsofseedabortionindovetreedavidiainvolucratabaill AT liuzhiming denovotranscriptomesequencingandgeneexpressionanalysisrevealpotentialmechanismsofseedabortionindovetreedavidiainvolucratabaill |