Cargando…
Autophagy Promotes Peripheral Nerve Regeneration and Motor Recovery Following Sciatic Nerve Crush Injury in Rats
Autophagy maintains cellular homeostasis by stimulating the lysosomal degradation of cytoplasmic structures, including damaged organelles and dysfunctional proteins. The role of autophagy in the renewal and regeneration of injured peripheral nerves remains poorly understood. The current study invest...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4829621/ https://www.ncbi.nlm.nih.gov/pubmed/26738732 http://dx.doi.org/10.1007/s12031-015-0672-9 |
_version_ | 1782426772656095232 |
---|---|
author | Huang, Hai-cheng Chen, Li Zhang, Hai-xing Li, Sheng-fa Liu, Pei Zhao, Tian-yun Li, Chuan-xiang |
author_facet | Huang, Hai-cheng Chen, Li Zhang, Hai-xing Li, Sheng-fa Liu, Pei Zhao, Tian-yun Li, Chuan-xiang |
author_sort | Huang, Hai-cheng |
collection | PubMed |
description | Autophagy maintains cellular homeostasis by stimulating the lysosomal degradation of cytoplasmic structures, including damaged organelles and dysfunctional proteins. The role of autophagy in the renewal and regeneration of injured peripheral nerves remains poorly understood. The current study investigated the role of autophagy in peripheral nerve regeneration and motor function recovery following sciatic nerve crush injury in rats by stimulating or suppressing autophagy and detecting the presence of autophagosomes and LC3-II expression by electron microscopy and Western blotting, respectively. Neurobehavioral function was tested by CatWalk gait analysis 1, 2, 3, and 6 weeks after injury, and the expression of neurofilament (NF)-200 and myelin basic protein (MBP) at the injury site was examined by immunocytochemistry. Apoptosis at the lesion site was determined by the terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Treatment of injured rats with the autophagy inducer rapamycin increased the number of autophagosomes and LC3-II expression while reducing the number of apoptotic cells at the lesion; this was associated with an upregulation of MBP and NF-200 expression and increased motor function recovery as compared to sham-operated rats and those that were subjected to crush injury but untreated. The opposite effects were observed in rats treated with the autophagy inhibitor 3-methyladenine. These data indicate that the modulation of autophagy in peripheral nerve injury could be an effective pharmacological approach to promote nerve regeneration and reestablish motor function. |
format | Online Article Text |
id | pubmed-4829621 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Springer US |
record_format | MEDLINE/PubMed |
spelling | pubmed-48296212016-04-22 Autophagy Promotes Peripheral Nerve Regeneration and Motor Recovery Following Sciatic Nerve Crush Injury in Rats Huang, Hai-cheng Chen, Li Zhang, Hai-xing Li, Sheng-fa Liu, Pei Zhao, Tian-yun Li, Chuan-xiang J Mol Neurosci Article Autophagy maintains cellular homeostasis by stimulating the lysosomal degradation of cytoplasmic structures, including damaged organelles and dysfunctional proteins. The role of autophagy in the renewal and regeneration of injured peripheral nerves remains poorly understood. The current study investigated the role of autophagy in peripheral nerve regeneration and motor function recovery following sciatic nerve crush injury in rats by stimulating or suppressing autophagy and detecting the presence of autophagosomes and LC3-II expression by electron microscopy and Western blotting, respectively. Neurobehavioral function was tested by CatWalk gait analysis 1, 2, 3, and 6 weeks after injury, and the expression of neurofilament (NF)-200 and myelin basic protein (MBP) at the injury site was examined by immunocytochemistry. Apoptosis at the lesion site was determined by the terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Treatment of injured rats with the autophagy inducer rapamycin increased the number of autophagosomes and LC3-II expression while reducing the number of apoptotic cells at the lesion; this was associated with an upregulation of MBP and NF-200 expression and increased motor function recovery as compared to sham-operated rats and those that were subjected to crush injury but untreated. The opposite effects were observed in rats treated with the autophagy inhibitor 3-methyladenine. These data indicate that the modulation of autophagy in peripheral nerve injury could be an effective pharmacological approach to promote nerve regeneration and reestablish motor function. Springer US 2016-01-07 2016 /pmc/articles/PMC4829621/ /pubmed/26738732 http://dx.doi.org/10.1007/s12031-015-0672-9 Text en © Springer Science+Business Media New York 2016 |
spellingShingle | Article Huang, Hai-cheng Chen, Li Zhang, Hai-xing Li, Sheng-fa Liu, Pei Zhao, Tian-yun Li, Chuan-xiang Autophagy Promotes Peripheral Nerve Regeneration and Motor Recovery Following Sciatic Nerve Crush Injury in Rats |
title | Autophagy Promotes Peripheral Nerve Regeneration and Motor Recovery Following Sciatic Nerve Crush Injury in Rats |
title_full | Autophagy Promotes Peripheral Nerve Regeneration and Motor Recovery Following Sciatic Nerve Crush Injury in Rats |
title_fullStr | Autophagy Promotes Peripheral Nerve Regeneration and Motor Recovery Following Sciatic Nerve Crush Injury in Rats |
title_full_unstemmed | Autophagy Promotes Peripheral Nerve Regeneration and Motor Recovery Following Sciatic Nerve Crush Injury in Rats |
title_short | Autophagy Promotes Peripheral Nerve Regeneration and Motor Recovery Following Sciatic Nerve Crush Injury in Rats |
title_sort | autophagy promotes peripheral nerve regeneration and motor recovery following sciatic nerve crush injury in rats |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4829621/ https://www.ncbi.nlm.nih.gov/pubmed/26738732 http://dx.doi.org/10.1007/s12031-015-0672-9 |
work_keys_str_mv | AT huanghaicheng autophagypromotesperipheralnerveregenerationandmotorrecoveryfollowingsciaticnervecrushinjuryinrats AT chenli autophagypromotesperipheralnerveregenerationandmotorrecoveryfollowingsciaticnervecrushinjuryinrats AT zhanghaixing autophagypromotesperipheralnerveregenerationandmotorrecoveryfollowingsciaticnervecrushinjuryinrats AT lishengfa autophagypromotesperipheralnerveregenerationandmotorrecoveryfollowingsciaticnervecrushinjuryinrats AT liupei autophagypromotesperipheralnerveregenerationandmotorrecoveryfollowingsciaticnervecrushinjuryinrats AT zhaotianyun autophagypromotesperipheralnerveregenerationandmotorrecoveryfollowingsciaticnervecrushinjuryinrats AT lichuanxiang autophagypromotesperipheralnerveregenerationandmotorrecoveryfollowingsciaticnervecrushinjuryinrats |