Cargando…

RNA-seq analysis for detecting quantitative trait-associated genes

Many recent RNA-seq studies were focused mainly on detecting the differentially expressed genes (DEGs) between two or more conditions. In contrast, only a few attempts have been made to detect genes associated with quantitative traits, such as obesity index and milk yield, on RNA-seq experiment with...

Descripción completa

Detalles Bibliográficos
Autores principales: Seo, Minseok, Kim, Kwondo, Yoon, Joon, Jeong, Jin Young, Lee, Hyun-Jeong, Cho, Seoae, Kim, Heebal
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4829873/
https://www.ncbi.nlm.nih.gov/pubmed/27071914
http://dx.doi.org/10.1038/srep24375
Descripción
Sumario:Many recent RNA-seq studies were focused mainly on detecting the differentially expressed genes (DEGs) between two or more conditions. In contrast, only a few attempts have been made to detect genes associated with quantitative traits, such as obesity index and milk yield, on RNA-seq experiment with large number of biological replicates. This study illustrates the linear model application on trait associated genes (TAGs) detection in two real RNA-seq datasets: 89 replicated human obesity related data and 21 replicated Holsteins’ milk production related RNA-seq data. Based on these two datasets, the performance between suggesting methods, such as ordinary regression and robust regression, and existing methods: DESeq2 and Voom, were compared. The results indicate that suggesting methods have much lower false discoveries compared to the precedent two group comparisons based approaches in our simulation study and qRT-PCR experiment. In particular, the robust regression outperforms existing DEG finding method as well as ordinary regression in terms of precision. Given the current trend in RNA-seq pricing, we expect our methods to be successfully applied in various RNA-seq studies with numerous biological replicates that handle continuous response traits.