Cargando…

Biofilm feeding: Microbial colonization of food promotes the growth of a detritivorous arthropod

Abstract. Feeding on plant material is common among animals, but how different animals overcome the dietary deficiencies imposed by this feeding strategy is not well understood. Microorganisms are generally considered to play a vital role in the nutritional ecology of plant feeding animals. Commonly...

Descripción completa

Detalles Bibliográficos
Autores principales: Horváthová, Terézia, Babik, Wiesław, Bauchinger, Ulf
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Pensoft Publishers 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4829882/
https://www.ncbi.nlm.nih.gov/pubmed/27110187
http://dx.doi.org/10.3897/zookeys.577.6149
_version_ 1782426816164659200
author Horváthová, Terézia
Babik, Wiesław
Bauchinger, Ulf
author_facet Horváthová, Terézia
Babik, Wiesław
Bauchinger, Ulf
author_sort Horváthová, Terézia
collection PubMed
description Abstract. Feeding on plant material is common among animals, but how different animals overcome the dietary deficiencies imposed by this feeding strategy is not well understood. Microorganisms are generally considered to play a vital role in the nutritional ecology of plant feeding animals. Commonly microbes living inside animal bodies are considered more important, but recent studies suggest external microbes significantly shape plant-feeding strategies in invertebrates. Here we investigate how external microbes that typically form biofilm on primary plant material affect growth rates in a terrestrial isopod species Porcellio scaber. We experimentally manipulated the amount of biofilm on three different primary diet sources and quantified growth and survival of individuals that fed on food with either a small or large amount of biofilm. In addition, we tested how dietary manipulation shapes the composition of bacterial communities in the gut. The presence of visible biofilm significantly affected the growth of isopods: individuals that fed on the primary diet source with a large amount of biofilm gained more mass than individuals feeding on a diet with marginal biofilm. Diet also significantly affected the bacterial gut community. The primary diet source mainly determined the taxonomic composition of the bacterial community in the isopod gut, whereas the amount of biofilm affected the relative abundance of bacterial taxa. Our study suggests that terrestrial isopods may cope with low-quality plant matter by feeding on biofilm, with decomposition of plant material by organisms outside of the feeding organism (here a terrestrial isopod) probably playing a major role. Future investigations may be directed towards the primary diet source, plant matter, and the secondary diet source, biofilm, and should assess if both components are indeed uptaken in detritivorous species.
format Online
Article
Text
id pubmed-4829882
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Pensoft Publishers
record_format MEDLINE/PubMed
spelling pubmed-48298822016-04-22 Biofilm feeding: Microbial colonization of food promotes the growth of a detritivorous arthropod Horváthová, Terézia Babik, Wiesław Bauchinger, Ulf Zookeys Research Article Abstract. Feeding on plant material is common among animals, but how different animals overcome the dietary deficiencies imposed by this feeding strategy is not well understood. Microorganisms are generally considered to play a vital role in the nutritional ecology of plant feeding animals. Commonly microbes living inside animal bodies are considered more important, but recent studies suggest external microbes significantly shape plant-feeding strategies in invertebrates. Here we investigate how external microbes that typically form biofilm on primary plant material affect growth rates in a terrestrial isopod species Porcellio scaber. We experimentally manipulated the amount of biofilm on three different primary diet sources and quantified growth and survival of individuals that fed on food with either a small or large amount of biofilm. In addition, we tested how dietary manipulation shapes the composition of bacterial communities in the gut. The presence of visible biofilm significantly affected the growth of isopods: individuals that fed on the primary diet source with a large amount of biofilm gained more mass than individuals feeding on a diet with marginal biofilm. Diet also significantly affected the bacterial gut community. The primary diet source mainly determined the taxonomic composition of the bacterial community in the isopod gut, whereas the amount of biofilm affected the relative abundance of bacterial taxa. Our study suggests that terrestrial isopods may cope with low-quality plant matter by feeding on biofilm, with decomposition of plant material by organisms outside of the feeding organism (here a terrestrial isopod) probably playing a major role. Future investigations may be directed towards the primary diet source, plant matter, and the secondary diet source, biofilm, and should assess if both components are indeed uptaken in detritivorous species. Pensoft Publishers 2016-04-05 /pmc/articles/PMC4829882/ /pubmed/27110187 http://dx.doi.org/10.3897/zookeys.577.6149 Text en Terézia Horváthová, Wiesław Babik, Ulf Bauchinger http://creativecommons.org/licenses/by/4.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Horváthová, Terézia
Babik, Wiesław
Bauchinger, Ulf
Biofilm feeding: Microbial colonization of food promotes the growth of a detritivorous arthropod
title Biofilm feeding: Microbial colonization of food promotes the growth of a detritivorous arthropod
title_full Biofilm feeding: Microbial colonization of food promotes the growth of a detritivorous arthropod
title_fullStr Biofilm feeding: Microbial colonization of food promotes the growth of a detritivorous arthropod
title_full_unstemmed Biofilm feeding: Microbial colonization of food promotes the growth of a detritivorous arthropod
title_short Biofilm feeding: Microbial colonization of food promotes the growth of a detritivorous arthropod
title_sort biofilm feeding: microbial colonization of food promotes the growth of a detritivorous arthropod
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4829882/
https://www.ncbi.nlm.nih.gov/pubmed/27110187
http://dx.doi.org/10.3897/zookeys.577.6149
work_keys_str_mv AT horvathovaterezia biofilmfeedingmicrobialcolonizationoffoodpromotesthegrowthofadetritivorousarthropod
AT babikwiesław biofilmfeedingmicrobialcolonizationoffoodpromotesthegrowthofadetritivorousarthropod
AT bauchingerulf biofilmfeedingmicrobialcolonizationoffoodpromotesthegrowthofadetritivorousarthropod