Cargando…
Predicting drug target interactions using meta-path-based semantic network analysis
BACKGROUND: In the context of drug discovery, drug target interactions (DTIs) can be predicted based on observed topological features of a semantic network across the chemical and biological space. In a semantic network, the types of the nodes and links are different. In order to take into account t...
Autores principales: | Fu, Gang, Ding, Ying, Seal, Abhik, Chen, Bin, Sun, Yizhou, Bolton, Evan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4830032/ https://www.ncbi.nlm.nih.gov/pubmed/27071755 http://dx.doi.org/10.1186/s12859-016-1005-x |
Ejemplares similares
-
Optimizing drug–target interaction prediction based on random walk on heterogeneous networks
por: Seal, Abhik, et al.
Publicado: (2015) -
Computational drug repositioning using meta-path-based semantic network analysis
por: Tian, Zhen, et al.
Publicado: (2018) -
Netpredictor: R and Shiny package to perform drug-target network analysis and prediction of missing links
por: Seal, Abhik, et al.
Publicado: (2018) -
DeepMPF: deep learning framework for predicting drug–target interactions based on multi-modal representation with meta-path semantic analysis
por: Ren, Zhong-Hao, et al.
Publicado: (2023) -
Assessing Drug Target Association Using Semantic Linked Data
por: Chen, Bin, et al.
Publicado: (2012)