Cargando…
Human Sulfatase-1 Improves the Effectiveness of Cytosine Deaminase Suicide Gene Therapy with 5-Fluorocytosine Treatment on Hepatocellular Carcinoma Cell Line HepG2 In Vitro and In Vivo
BACKGROUND: Human sulfatase-1 (Hsulf-1) is an endosulfatase that selectively removes sulfate groups from heparan sulfate proteoglycans (HSPGs), altering the binding of several growth factors and cytokines to HSPG to regulate cell proliferation, cell motility, and apoptosis. We investigated the role...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4830321/ https://www.ncbi.nlm.nih.gov/pubmed/25963362 http://dx.doi.org/10.4103/0366-6999.156800 |
_version_ | 1782426886558711808 |
---|---|
author | Yang, Xiao-Ping Liu, Ling Wang, Ping Ma, Sheng-Lin |
author_facet | Yang, Xiao-Ping Liu, Ling Wang, Ping Ma, Sheng-Lin |
author_sort | Yang, Xiao-Ping |
collection | PubMed |
description | BACKGROUND: Human sulfatase-1 (Hsulf-1) is an endosulfatase that selectively removes sulfate groups from heparan sulfate proteoglycans (HSPGs), altering the binding of several growth factors and cytokines to HSPG to regulate cell proliferation, cell motility, and apoptosis. We investigated the role of combined cancer gene therapy with Hsulf-1 and cytosine deaminase/5-fluorocytosine (CD/5-FC) suicide gene on a hepatocellular carcinoma (HCC) cell line, HepG2, in vitro and in vivo. METHODS: Reverse transcription polymerase chain reaction and immunohistochemistry were used to determine the expression of Hsulf-1 in HCC. Cell apoptosis was observed through flow cytometry instrument and mechanism of Hsulf-1 to enhance the cytotoxicity of 5-FC against HCC was analyzed in HCC by confocal microscopy. We also establish a nude mice model of HCC to address the effect of Hsulf-1 expression on the CD/5-FC suicide gene therapy in vivo. RESULTS: A significant decrease in HepG2 cell proliferation and an increase in HepG2 cell apoptosis were observed when Hsulf-1 expression was combined with the CD/5-FC gene suicide system. A noticeable bystander effect was observed when the Hsulf-1 and CD genes were co-expressed. Intracellular calcium was also increased after HepG2 cells were infected with the Hsulf-1 gene. In vivo studies showed that the suppression of tumor growth was more pronounced in animals treated with the Hsulf-1 plus CD than those treated with either gene therapy alone, and the combined treatment resulted in a significant increase in survival. CONCLUSIONS: Hsulf-1 expression combined with the CD/5-FC gene suicide system could be an effective treatment approach for HCC. |
format | Online Article Text |
id | pubmed-4830321 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Medknow Publications & Media Pvt Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-48303212016-04-28 Human Sulfatase-1 Improves the Effectiveness of Cytosine Deaminase Suicide Gene Therapy with 5-Fluorocytosine Treatment on Hepatocellular Carcinoma Cell Line HepG2 In Vitro and In Vivo Yang, Xiao-Ping Liu, Ling Wang, Ping Ma, Sheng-Lin Chin Med J (Engl) Original Article BACKGROUND: Human sulfatase-1 (Hsulf-1) is an endosulfatase that selectively removes sulfate groups from heparan sulfate proteoglycans (HSPGs), altering the binding of several growth factors and cytokines to HSPG to regulate cell proliferation, cell motility, and apoptosis. We investigated the role of combined cancer gene therapy with Hsulf-1 and cytosine deaminase/5-fluorocytosine (CD/5-FC) suicide gene on a hepatocellular carcinoma (HCC) cell line, HepG2, in vitro and in vivo. METHODS: Reverse transcription polymerase chain reaction and immunohistochemistry were used to determine the expression of Hsulf-1 in HCC. Cell apoptosis was observed through flow cytometry instrument and mechanism of Hsulf-1 to enhance the cytotoxicity of 5-FC against HCC was analyzed in HCC by confocal microscopy. We also establish a nude mice model of HCC to address the effect of Hsulf-1 expression on the CD/5-FC suicide gene therapy in vivo. RESULTS: A significant decrease in HepG2 cell proliferation and an increase in HepG2 cell apoptosis were observed when Hsulf-1 expression was combined with the CD/5-FC gene suicide system. A noticeable bystander effect was observed when the Hsulf-1 and CD genes were co-expressed. Intracellular calcium was also increased after HepG2 cells were infected with the Hsulf-1 gene. In vivo studies showed that the suppression of tumor growth was more pronounced in animals treated with the Hsulf-1 plus CD than those treated with either gene therapy alone, and the combined treatment resulted in a significant increase in survival. CONCLUSIONS: Hsulf-1 expression combined with the CD/5-FC gene suicide system could be an effective treatment approach for HCC. Medknow Publications & Media Pvt Ltd 2015-05-20 /pmc/articles/PMC4830321/ /pubmed/25963362 http://dx.doi.org/10.4103/0366-6999.156800 Text en Copyright: © 2015 Chinese Medical Journal http://creativecommons.org/licenses/by-nc-sa/3.0 This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms. |
spellingShingle | Original Article Yang, Xiao-Ping Liu, Ling Wang, Ping Ma, Sheng-Lin Human Sulfatase-1 Improves the Effectiveness of Cytosine Deaminase Suicide Gene Therapy with 5-Fluorocytosine Treatment on Hepatocellular Carcinoma Cell Line HepG2 In Vitro and In Vivo |
title | Human Sulfatase-1 Improves the Effectiveness of Cytosine Deaminase Suicide Gene Therapy with 5-Fluorocytosine Treatment on Hepatocellular Carcinoma Cell Line HepG2 In Vitro and In Vivo |
title_full | Human Sulfatase-1 Improves the Effectiveness of Cytosine Deaminase Suicide Gene Therapy with 5-Fluorocytosine Treatment on Hepatocellular Carcinoma Cell Line HepG2 In Vitro and In Vivo |
title_fullStr | Human Sulfatase-1 Improves the Effectiveness of Cytosine Deaminase Suicide Gene Therapy with 5-Fluorocytosine Treatment on Hepatocellular Carcinoma Cell Line HepG2 In Vitro and In Vivo |
title_full_unstemmed | Human Sulfatase-1 Improves the Effectiveness of Cytosine Deaminase Suicide Gene Therapy with 5-Fluorocytosine Treatment on Hepatocellular Carcinoma Cell Line HepG2 In Vitro and In Vivo |
title_short | Human Sulfatase-1 Improves the Effectiveness of Cytosine Deaminase Suicide Gene Therapy with 5-Fluorocytosine Treatment on Hepatocellular Carcinoma Cell Line HepG2 In Vitro and In Vivo |
title_sort | human sulfatase-1 improves the effectiveness of cytosine deaminase suicide gene therapy with 5-fluorocytosine treatment on hepatocellular carcinoma cell line hepg2 in vitro and in vivo |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4830321/ https://www.ncbi.nlm.nih.gov/pubmed/25963362 http://dx.doi.org/10.4103/0366-6999.156800 |
work_keys_str_mv | AT yangxiaoping humansulfatase1improvestheeffectivenessofcytosinedeaminasesuicidegenetherapywith5fluorocytosinetreatmentonhepatocellularcarcinomacelllinehepg2invitroandinvivo AT liuling humansulfatase1improvestheeffectivenessofcytosinedeaminasesuicidegenetherapywith5fluorocytosinetreatmentonhepatocellularcarcinomacelllinehepg2invitroandinvivo AT wangping humansulfatase1improvestheeffectivenessofcytosinedeaminasesuicidegenetherapywith5fluorocytosinetreatmentonhepatocellularcarcinomacelllinehepg2invitroandinvivo AT mashenglin humansulfatase1improvestheeffectivenessofcytosinedeaminasesuicidegenetherapywith5fluorocytosinetreatmentonhepatocellularcarcinomacelllinehepg2invitroandinvivo |