Cargando…
Dexmedetomidine May Produce Extra Protective Effects on Sepsis-induced Diaphragm Injury
OBJECTIVE: The objective was to evaluate the protective effects of dexmedetomidine (DEX), a selective agonist of α2-adrenergic receptor, on sepsis-induced diaphragm injury and the underlying molecular mechanisms. DATA SOURCES: The data used in this review were mainly from PubMed articles published i...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4830324/ https://www.ncbi.nlm.nih.gov/pubmed/25963365 http://dx.doi.org/10.4103/0366-6999.156808 |
Sumario: | OBJECTIVE: The objective was to evaluate the protective effects of dexmedetomidine (DEX), a selective agonist of α2-adrenergic receptor, on sepsis-induced diaphragm injury and the underlying molecular mechanisms. DATA SOURCES: The data used in this review were mainly from PubMed articles published in English from 1990 to 2015. STUDY SELECTION: Clinical or basic research articles were selected mainly according to their level of relevance to this topic. RESULTS: Sepsis could induce severe diaphragm dysfunction and exacerbate respiratory weakness. The mechanism of sepsis-induced diaphragm injury includes the increased inflammatory cytokines and excessive oxidative stress and superfluous production of nitric oxide (NO). DEX can reduce inflammatory cytokines, inhibit nuclear factor-kappaB signaling pathways, suppress the activation of caspase-3, furthermore decrease oxidative stress and inhibit NO synthase. On the basis of these mechanisms, DEX may result in a shorter period of mechanical ventilation in septic patients in clinical practice. CONCLUSIONS: Based on this current available evidence, DEX may produce extra protective effects on sepsis-induced diaphragm injury. Further direct evidence and more specific studies are still required to confirm these beneficial effects. |
---|