Cargando…
Enzyme-Instructed Self-Assembly of Small d-Peptides as a Multiple-Step Process for Selectively Killing Cancer Cells
[Image: see text] Selective inhibition of cancer cells remains a challenge in chemotherapy. Here we report the molecular and cellular validation of enzyme-instructed self-assembly (EISA) as a multiple step process for selectively killing cancer cells that overexpress alkaline phosphatases (ALPs). We...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2016
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4830347/ https://www.ncbi.nlm.nih.gov/pubmed/26966844 http://dx.doi.org/10.1021/jacs.5b13541 |
_version_ | 1782426889287106560 |
---|---|
author | Zhou, Jie Du, Xuewen Yamagata, Natsuko Xu, Bing |
author_facet | Zhou, Jie Du, Xuewen Yamagata, Natsuko Xu, Bing |
author_sort | Zhou, Jie |
collection | PubMed |
description | [Image: see text] Selective inhibition of cancer cells remains a challenge in chemotherapy. Here we report the molecular and cellular validation of enzyme-instructed self-assembly (EISA) as a multiple step process for selectively killing cancer cells that overexpress alkaline phosphatases (ALPs). We design and synthesize two kinds of d-tetrapeptide containing one or two phosphotyrosine residues and with the N-terminal capped by a naphthyl group. Upon enzymatic dephosphorylation, these d-tetrapeptides turn into self-assembling molecules to form nanofibers in water. Incubating these d-tetrapeptides with several cancer cell lines and one normal cell line, the unphosphorylated d-tetrapeptides are innocuous to all the cell lines, the mono- and diphosphorylated d-tetrapeptides selectively inhibit the cancer cells, but not the normal cell. The monophosphorylated d-tetrapeptides exhibit more potent inhibitory activity than the diphosphorylated d-tetrapeptides do; the cancer cell lines express higher level of ALPs are more susceptible to inhibition by the phosphorylated d-tetrapeptides; the precursors of d-tetrapeptides that possess higher self-assembling abilities exhibit higher inhibitory activities. These results confirm the important role of enzymatic reaction and self-assembly. Using uncompetitive inhibitors of ALPs and fluorescent d-tetrapeptides, we delineate that the enzyme catalyzed dephosphorylation and the self-assembly steps, together, result in the localization of the nanofibers of d-tetrapeptides for killing the cancer cells. We find that the cell death modality likely associates with the cell type and prove the interactions between nanofibers and the death receptors. This work illustrates a paradigm-shifting and biomimetic approach and contributes useful molecular insights for the development of spatiotemporal defined supramolecular processes/assemblies as potential anticancer therapeutics. |
format | Online Article Text |
id | pubmed-4830347 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-48303472017-03-11 Enzyme-Instructed Self-Assembly of Small d-Peptides as a Multiple-Step Process for Selectively Killing Cancer Cells Zhou, Jie Du, Xuewen Yamagata, Natsuko Xu, Bing J Am Chem Soc [Image: see text] Selective inhibition of cancer cells remains a challenge in chemotherapy. Here we report the molecular and cellular validation of enzyme-instructed self-assembly (EISA) as a multiple step process for selectively killing cancer cells that overexpress alkaline phosphatases (ALPs). We design and synthesize two kinds of d-tetrapeptide containing one or two phosphotyrosine residues and with the N-terminal capped by a naphthyl group. Upon enzymatic dephosphorylation, these d-tetrapeptides turn into self-assembling molecules to form nanofibers in water. Incubating these d-tetrapeptides with several cancer cell lines and one normal cell line, the unphosphorylated d-tetrapeptides are innocuous to all the cell lines, the mono- and diphosphorylated d-tetrapeptides selectively inhibit the cancer cells, but not the normal cell. The monophosphorylated d-tetrapeptides exhibit more potent inhibitory activity than the diphosphorylated d-tetrapeptides do; the cancer cell lines express higher level of ALPs are more susceptible to inhibition by the phosphorylated d-tetrapeptides; the precursors of d-tetrapeptides that possess higher self-assembling abilities exhibit higher inhibitory activities. These results confirm the important role of enzymatic reaction and self-assembly. Using uncompetitive inhibitors of ALPs and fluorescent d-tetrapeptides, we delineate that the enzyme catalyzed dephosphorylation and the self-assembly steps, together, result in the localization of the nanofibers of d-tetrapeptides for killing the cancer cells. We find that the cell death modality likely associates with the cell type and prove the interactions between nanofibers and the death receptors. This work illustrates a paradigm-shifting and biomimetic approach and contributes useful molecular insights for the development of spatiotemporal defined supramolecular processes/assemblies as potential anticancer therapeutics. American Chemical Society 2016-03-11 2016-03-23 /pmc/articles/PMC4830347/ /pubmed/26966844 http://dx.doi.org/10.1021/jacs.5b13541 Text en Copyright © 2016 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Zhou, Jie Du, Xuewen Yamagata, Natsuko Xu, Bing Enzyme-Instructed Self-Assembly of Small d-Peptides as a Multiple-Step Process for Selectively Killing Cancer Cells |
title | Enzyme-Instructed
Self-Assembly of Small d-Peptides as a Multiple-Step
Process for Selectively Killing
Cancer Cells |
title_full | Enzyme-Instructed
Self-Assembly of Small d-Peptides as a Multiple-Step
Process for Selectively Killing
Cancer Cells |
title_fullStr | Enzyme-Instructed
Self-Assembly of Small d-Peptides as a Multiple-Step
Process for Selectively Killing
Cancer Cells |
title_full_unstemmed | Enzyme-Instructed
Self-Assembly of Small d-Peptides as a Multiple-Step
Process for Selectively Killing
Cancer Cells |
title_short | Enzyme-Instructed
Self-Assembly of Small d-Peptides as a Multiple-Step
Process for Selectively Killing
Cancer Cells |
title_sort | enzyme-instructed
self-assembly of small d-peptides as a multiple-step
process for selectively killing
cancer cells |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4830347/ https://www.ncbi.nlm.nih.gov/pubmed/26966844 http://dx.doi.org/10.1021/jacs.5b13541 |
work_keys_str_mv | AT zhoujie enzymeinstructedselfassemblyofsmalldpeptidesasamultiplestepprocessforselectivelykillingcancercells AT duxuewen enzymeinstructedselfassemblyofsmalldpeptidesasamultiplestepprocessforselectivelykillingcancercells AT yamagatanatsuko enzymeinstructedselfassemblyofsmalldpeptidesasamultiplestepprocessforselectivelykillingcancercells AT xubing enzymeinstructedselfassemblyofsmalldpeptidesasamultiplestepprocessforselectivelykillingcancercells |