Cargando…
DiMeX: A Text Mining System for Mutation-Disease Association Extraction
The number of published articles describing associations between mutations and diseases is increasing at a fast pace. There is a pressing need to gather such mutation-disease associations into public knowledge bases, but manual curation slows down the growth of such databases. We have addressed this...
Autores principales: | Mahmood, A. S. M. Ashique, Wu, Tsung-Jung, Mazumder, Raja, Vijay-Shanker, K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4830514/ https://www.ncbi.nlm.nih.gov/pubmed/27073839 http://dx.doi.org/10.1371/journal.pone.0152725 |
Ejemplares similares
-
iTextMine: integrated text-mining system for large-scale knowledge extraction from the literature
por: Ren, Jia, et al.
Publicado: (2018) -
eGARD: Extracting associations between genomic anomalies and drug responses from text
por: Mahmood, A. S. M. Ashique, et al.
Publicado: (2017) -
DEXTER: Disease-Expression Relation Extraction from Text
por: Gupta, Samir, et al.
Publicado: (2018) -
miRTex: A Text Mining System for miRNA-Gene Relation Extraction
por: Li, Gang, et al.
Publicado: (2015) -
Text mining of CHO bioprocess bibliome: Topic modeling and document classification
por: Wang, Qinghua, et al.
Publicado: (2023)