Cargando…
Transformer fault diagnosis using continuous sparse autoencoder
This paper proposes a novel continuous sparse autoencoder (CSAE) which can be used in unsupervised feature learning. The CSAE adds Gaussian stochastic unit into activation function to extract features of nonlinear data. In this paper, CSAE is applied to solve the problem of transformer fault recogni...
Autores principales: | Wang, Lukun, Zhao, Xiaoying, Pei, Jiangnan, Tang, Gongyou |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4830783/ https://www.ncbi.nlm.nih.gov/pubmed/27119052 http://dx.doi.org/10.1186/s40064-016-2107-7 |
Ejemplares similares
-
Recognition of Human Activities Using Continuous Autoencoders with Wearable Sensors
por: Wang, Lukun
Publicado: (2016) -
Lane changing trajectory planning and tracking control for intelligent vehicle on curved road
por: Wang, Lukun, et al.
Publicado: (2016) -
Detection of preterm birth in electrohysterogram signals based on wavelet transform and stacked sparse autoencoder
por: Chen, Lili, et al.
Publicado: (2019) -
Sparse Convolutional Denoising Autoencoders for Genotype Imputation
por: Chen, Junjie, et al.
Publicado: (2019) -
A Novel Fault Diagnosis Method for Denoising Autoencoder Assisted by Digital Twin
por: Cai, Wenan, et al.
Publicado: (2022)