Cargando…

Hollow Li(20)B(60) Cage: Stability and Hydrogen Storage

A stable hollow Li(20)B(60) cage with D(2) symmetry has been identified using first-principles density functional theory studies. The results of vibrational frequency analysis and molecular dynamics simulations demonstrate that this Li(20)B(60) cage is exceptionally stable. The feasibility of functi...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Jing, Wei, Zhi-Jing, Zhao, Hui-Yan, Liu, Ying
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4830930/
https://www.ncbi.nlm.nih.gov/pubmed/27076264
http://dx.doi.org/10.1038/srep24500
Descripción
Sumario:A stable hollow Li(20)B(60) cage with D(2) symmetry has been identified using first-principles density functional theory studies. The results of vibrational frequency analysis and molecular dynamics simulations demonstrate that this Li(20)B(60) cage is exceptionally stable. The feasibility of functionalizing Li(20)B(60) cage for hydrogen storage was explored theoretically. Our calculated results show that the Li(20)B(60) molecule can adsorb a maximum of 28 hydrogen molecules. With a hydrogen uptake of 8.190 wt% and an average binding energy of 0.336 eV/H(2), Li(20)B(60) is a remarkable high-capacity storage medium.