Cargando…

Facile Synthesis of Cadmium-Free Zn-In-S:Ag/ZnS Nanocrystals for Bio-Imaging

High quality cadmium-free Zn-In-S:Ag doped-nanocrystals (d-NCs) were synthesized via a simple one-step noninjection route using silver nitrate, indium acetate, zinc acetate, oleylamine, S powder and 1-dodecanethiol as starting materials in an organic phase. The size and optical properties can be eff...

Descripción completa

Detalles Bibliográficos
Autores principales: Xuan, Tong-Tong, Liu, Jia-Qing, Yu, Cai-Yan, Xie, Rong-Jun, Li, Hui-Li
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4830992/
https://www.ncbi.nlm.nih.gov/pubmed/27074820
http://dx.doi.org/10.1038/srep24459
Descripción
Sumario:High quality cadmium-free Zn-In-S:Ag doped-nanocrystals (d-NCs) were synthesized via a simple one-step noninjection route using silver nitrate, indium acetate, zinc acetate, oleylamine, S powder and 1-dodecanethiol as starting materials in an organic phase. The size and optical properties can be effectively tailored by controlling the reaction time, reaction temperature, Ag(+) dopant concentration, and the molar ratio of In to Zn. The photoluminescence wavelength of as-prepared Zn-In-S:Ag NCs covered a broad visible range from 458 nm to 603 nm. After being passivated by protective ZnS shell, the photoluminescence quantum yield (PLQY) of Zn-In-S:Ag(+) /ZnS was greatly improved to 43.5%. More importantly, the initial high PLQY of the obtained core/shell d-NCs in organic media can be preserved when being transferred into the aqueous media via ligand exchange. Finally, high quality Zn-In-S:Ag(+) /ZnS d-NCs in aqueous phase were applied as bio-imaging agents for identifying living KB cells.