Cargando…

Interleukin-10 deficiency impairs regulatory T cell-derived neuropilin-1 functions and promotes Th1 and Th17 immunity

Regulatory T cells (Tregs) expand in peripheral lymphoid organs and can produce immunosuppressive cytokines to support tumor growth. IL-10 abrogation efficiently induces Treg formation but dampens tumoral neuropilin-1 (Nrp-1) Treg signaling, which simultaneously augments Th1 and Th17 immunity. These...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Shimin, Gao, Xiang, Shen, Guobo, Wang, Wei, Li, Jingyu, Zhao, Jingyi, Wei, Yu-Quan, Edwards, Carl K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4831052/
https://www.ncbi.nlm.nih.gov/pubmed/27075020
http://dx.doi.org/10.1038/srep24249
Descripción
Sumario:Regulatory T cells (Tregs) expand in peripheral lymphoid organs and can produce immunosuppressive cytokines to support tumor growth. IL-10 abrogation efficiently induces Treg formation but dampens tumoral neuropilin-1 (Nrp-1) Treg signaling, which simultaneously augments Th1 and Th17 immunity. These effects are associated with the plasticity and stability of Tregs and effector T cell functions that can limit tumorigenesis. Within the tumor microenvironment, there appears to be a “mutual antagonism” between immunoenhancement and immunosuppression mechanisms, eventually leading to decreased metastasis. In contrast, tumor progression is paralleled by a reduction in Nrp-1-producing Tregs controlled by the IL-10 and TGF-β1 levels. However, Th1, Th17 and Treg immunity is primarily regulated by IL-10 or Nrp-1 and not TGF-β1 except when combined with IL-10. These results emphasize the important implications for the therapeutic use of Tregs. The number of Treg cells must be maintained in a healthy and dynamic homeostatic range to prevent malignant diseases. Moreover, Treg-mediated immunosuppression can be limited by reducing tumor-derived Treg Nrp-1 levels.