Cargando…

Mind the wind: microclimate effects on incubation effort of an arctic seabird

The energetic costs of reproduction in birds strongly depend on the climate experienced during incubation. Climate change and increasing frequency of extreme weather events may severely affect these costs, especially for species incubating in extreme environments. In this 3‐year study, we used an ex...

Descripción completa

Detalles Bibliográficos
Autores principales: Høyvik Hilde, Christoffer, Pélabon, Christophe, Guéry, Loreleï, Gabrielsen, Geir Wing, Descamps, Sébastien
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4831427/
https://www.ncbi.nlm.nih.gov/pubmed/27099703
http://dx.doi.org/10.1002/ece3.1988
Descripción
Sumario:The energetic costs of reproduction in birds strongly depend on the climate experienced during incubation. Climate change and increasing frequency of extreme weather events may severely affect these costs, especially for species incubating in extreme environments. In this 3‐year study, we used an experimental approach to investigate the effects of microclimate and nest shelter on the incubation effort of female common eiders (Somateria mollissima) in a wild Arctic population. We added artificial shelters to a random selection of nesting females, and compared incubation effort, measured as body mass loss during incubation, between females with and without shelter. Nonsheltered females had a higher incubation effort than females with artificial shelters. In nonsheltered females, higher wind speeds increased the incubation effort, while artificially sheltered females experienced no effect of wind. Although increasing ambient temperatures tended to decrease incubation effort, this effect was negligible in the absence of wind. Humidity had no marked effect on incubation effort. This study clearly displays the direct effect of a climatic variable on an important aspect of avian life‐history. By showing that increasing wind speed counteracts the energetic benefits of a rising ambient temperature, we were able to demonstrate that a climatic variable other than temperature may also affect wild populations and need to be taken into account when predicting the effects of climate change.