Cargando…

The implications of small stem cell niche sizes and the distribution of fitness effects of new mutations in aging and tumorigenesis

Somatic tissue evolves over a vertebrate's lifetime due to the accumulation of mutations in stem cell populations. Mutations may alter cellular fitness and contribute to tumorigenesis or aging. The distribution of mutational effects within somatic cells is not known. Given the unique regulatory...

Descripción completa

Detalles Bibliográficos
Autores principales: Cannataro, Vincent L., McKinley, Scott A., St. Mary, Colette M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4831459/
https://www.ncbi.nlm.nih.gov/pubmed/27099622
http://dx.doi.org/10.1111/eva.12361
_version_ 1782427074057732096
author Cannataro, Vincent L.
McKinley, Scott A.
St. Mary, Colette M.
author_facet Cannataro, Vincent L.
McKinley, Scott A.
St. Mary, Colette M.
author_sort Cannataro, Vincent L.
collection PubMed
description Somatic tissue evolves over a vertebrate's lifetime due to the accumulation of mutations in stem cell populations. Mutations may alter cellular fitness and contribute to tumorigenesis or aging. The distribution of mutational effects within somatic cells is not known. Given the unique regulatory regime of somatic cell division, we hypothesize that mutational effects in somatic tissue fall into a different framework than whole organisms; one in which there are more mutations of large effect. Through simulation analysis, we investigate the fit of tumor incidence curves generated using exponential and power‐law distributions of fitness effects (DFE) to known tumorigenesis incidence. Modeling considerations include the architecture of stem cell populations, that is, a large number of very small populations, and mutations that do and do not fix neutrally in the stem cell niche. We find that the typically quantified DFE in whole organisms is sufficient to explain tumorigenesis incidence. Further, deleterious mutations are predicted to accumulate via genetic drift, resulting in reduced tissue maintenance. Thus, despite there being a large number of stem cells throughout the intestine, its compartmental architecture leads to the accumulation of deleterious mutations and significant aging, making the intestinal stem cell niche a prime example of Muller's Ratchet.
format Online
Article
Text
id pubmed-4831459
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-48314592016-04-20 The implications of small stem cell niche sizes and the distribution of fitness effects of new mutations in aging and tumorigenesis Cannataro, Vincent L. McKinley, Scott A. St. Mary, Colette M. Evol Appl Original Articles Somatic tissue evolves over a vertebrate's lifetime due to the accumulation of mutations in stem cell populations. Mutations may alter cellular fitness and contribute to tumorigenesis or aging. The distribution of mutational effects within somatic cells is not known. Given the unique regulatory regime of somatic cell division, we hypothesize that mutational effects in somatic tissue fall into a different framework than whole organisms; one in which there are more mutations of large effect. Through simulation analysis, we investigate the fit of tumor incidence curves generated using exponential and power‐law distributions of fitness effects (DFE) to known tumorigenesis incidence. Modeling considerations include the architecture of stem cell populations, that is, a large number of very small populations, and mutations that do and do not fix neutrally in the stem cell niche. We find that the typically quantified DFE in whole organisms is sufficient to explain tumorigenesis incidence. Further, deleterious mutations are predicted to accumulate via genetic drift, resulting in reduced tissue maintenance. Thus, despite there being a large number of stem cells throughout the intestine, its compartmental architecture leads to the accumulation of deleterious mutations and significant aging, making the intestinal stem cell niche a prime example of Muller's Ratchet. John Wiley and Sons Inc. 2016-03-08 /pmc/articles/PMC4831459/ /pubmed/27099622 http://dx.doi.org/10.1111/eva.12361 Text en © 2016 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/3.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Articles
Cannataro, Vincent L.
McKinley, Scott A.
St. Mary, Colette M.
The implications of small stem cell niche sizes and the distribution of fitness effects of new mutations in aging and tumorigenesis
title The implications of small stem cell niche sizes and the distribution of fitness effects of new mutations in aging and tumorigenesis
title_full The implications of small stem cell niche sizes and the distribution of fitness effects of new mutations in aging and tumorigenesis
title_fullStr The implications of small stem cell niche sizes and the distribution of fitness effects of new mutations in aging and tumorigenesis
title_full_unstemmed The implications of small stem cell niche sizes and the distribution of fitness effects of new mutations in aging and tumorigenesis
title_short The implications of small stem cell niche sizes and the distribution of fitness effects of new mutations in aging and tumorigenesis
title_sort implications of small stem cell niche sizes and the distribution of fitness effects of new mutations in aging and tumorigenesis
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4831459/
https://www.ncbi.nlm.nih.gov/pubmed/27099622
http://dx.doi.org/10.1111/eva.12361
work_keys_str_mv AT cannatarovincentl theimplicationsofsmallstemcellnichesizesandthedistributionoffitnesseffectsofnewmutationsinagingandtumorigenesis
AT mckinleyscotta theimplicationsofsmallstemcellnichesizesandthedistributionoffitnesseffectsofnewmutationsinagingandtumorigenesis
AT stmarycolettem theimplicationsofsmallstemcellnichesizesandthedistributionoffitnesseffectsofnewmutationsinagingandtumorigenesis
AT cannatarovincentl implicationsofsmallstemcellnichesizesandthedistributionoffitnesseffectsofnewmutationsinagingandtumorigenesis
AT mckinleyscotta implicationsofsmallstemcellnichesizesandthedistributionoffitnesseffectsofnewmutationsinagingandtumorigenesis
AT stmarycolettem implicationsofsmallstemcellnichesizesandthedistributionoffitnesseffectsofnewmutationsinagingandtumorigenesis