Cargando…

Stimulation of Anterior Thalamic Nuclei Protects Against Seizures and Neuronal Apoptosis in Hippocampal CA3 Region of Kainic Acid-induced Epileptic Rats

BACKGROUND: The antiepileptic effect of the anterior thalamic nuclei (ANT) stimulation has been demonstrated; however, its underlying mechanism remains unclear. The aim of this study was to investigate the effect of chronic ANT stimulation on hippocampal neuron loss and apoptosis. METHODS: Sixty-fou...

Descripción completa

Detalles Bibliográficos
Autores principales: Meng, Da-Wei, Liu, Huan-Guang, Yang, An-Chao, Zhang, Kai, Zhang, Jian-Guo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4831532/
https://www.ncbi.nlm.nih.gov/pubmed/27064042
http://dx.doi.org/10.4103/0366-6999.179799
_version_ 1782427094538518528
author Meng, Da-Wei
Liu, Huan-Guang
Yang, An-Chao
Zhang, Kai
Zhang, Jian-Guo
author_facet Meng, Da-Wei
Liu, Huan-Guang
Yang, An-Chao
Zhang, Kai
Zhang, Jian-Guo
author_sort Meng, Da-Wei
collection PubMed
description BACKGROUND: The antiepileptic effect of the anterior thalamic nuclei (ANT) stimulation has been demonstrated; however, its underlying mechanism remains unclear. The aim of this study was to investigate the effect of chronic ANT stimulation on hippocampal neuron loss and apoptosis. METHODS: Sixty-four rats were divided into four groups: The control group, the kainic acid (KA) group, the sham-deep brain stimulation (DBS) group, and the DBS group. KA was used to induce epilepsy. Seizure count and latency to the first spontaneous seizures were calculated. Nissl staining was used to analyze hippocampal neuronal loss. Polymerase chain reaction and Western blotting were conducted to assess the expression of caspase-3 (Casp3), B-cell lymphoma-2 (Bcl2), and Bcl2-associated X protein (Bax) in the hippocampal CA3 region. One-way analysis of variance was used to determine the differences between the four groups. RESULTS: The latency to the first spontaneous seizures in the DBS group was significantly longer than that in the KA group (27.50 ± 8.05 vs. 16.38 ± 7.25 days, P = 0.0005). The total seizure number in the DBS group was also significantly reduced (DBS vs. KA group: 11.75 ± 6.80 vs. 23.25 ± 7.72, P = 0.0002). Chronic ANT-DBS reduced neuronal loss in the hippocampal CA3 region (DBS vs. KA group: 23.58 ± 6.34 vs. 13.13 ± 4.00, P = 0.0012). After chronic DBS, the relative mRNA expression level of Casp3 was decreased (DBS vs. KA group: 1.18 ± 0.37 vs. 2.09 ± 0.46, P = 0.0003), and the relative mRNA expression level of Bcl2 was increased (DBS vs. KA group: 0.92 ± 0.21 vs. 0.48 ± 0.16, P = 0.0004). The protein expression levels of CASP3 (DBS vs. KA group: 1.25 ± 0.26 vs. 2.49 ± 0.38, P < 0.0001) and BAX (DBS vs. KA group: 1.57 ± 0.49 vs. 2.80 ± 0.63, P = 0.0012) both declined in the DBS group whereas the protein expression level of BCL2 (DBS vs. KA group: 0.78 ± 0.32 vs. 0.36 ± 0.17, P = 0.0086) increased in the DBS group. CONCLUSIONS: This study demonstrated that chronic ANT stimulation could exert a neuroprotective effect on hippocampal neurons. This neuroprotective effect is likely to be mediated by the inhibition of apoptosis in the epileptic hippocampus.
format Online
Article
Text
id pubmed-4831532
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Medknow Publications & Media Pvt Ltd
record_format MEDLINE/PubMed
spelling pubmed-48315322016-04-28 Stimulation of Anterior Thalamic Nuclei Protects Against Seizures and Neuronal Apoptosis in Hippocampal CA3 Region of Kainic Acid-induced Epileptic Rats Meng, Da-Wei Liu, Huan-Guang Yang, An-Chao Zhang, Kai Zhang, Jian-Guo Chin Med J (Engl) Original Article BACKGROUND: The antiepileptic effect of the anterior thalamic nuclei (ANT) stimulation has been demonstrated; however, its underlying mechanism remains unclear. The aim of this study was to investigate the effect of chronic ANT stimulation on hippocampal neuron loss and apoptosis. METHODS: Sixty-four rats were divided into four groups: The control group, the kainic acid (KA) group, the sham-deep brain stimulation (DBS) group, and the DBS group. KA was used to induce epilepsy. Seizure count and latency to the first spontaneous seizures were calculated. Nissl staining was used to analyze hippocampal neuronal loss. Polymerase chain reaction and Western blotting were conducted to assess the expression of caspase-3 (Casp3), B-cell lymphoma-2 (Bcl2), and Bcl2-associated X protein (Bax) in the hippocampal CA3 region. One-way analysis of variance was used to determine the differences between the four groups. RESULTS: The latency to the first spontaneous seizures in the DBS group was significantly longer than that in the KA group (27.50 ± 8.05 vs. 16.38 ± 7.25 days, P = 0.0005). The total seizure number in the DBS group was also significantly reduced (DBS vs. KA group: 11.75 ± 6.80 vs. 23.25 ± 7.72, P = 0.0002). Chronic ANT-DBS reduced neuronal loss in the hippocampal CA3 region (DBS vs. KA group: 23.58 ± 6.34 vs. 13.13 ± 4.00, P = 0.0012). After chronic DBS, the relative mRNA expression level of Casp3 was decreased (DBS vs. KA group: 1.18 ± 0.37 vs. 2.09 ± 0.46, P = 0.0003), and the relative mRNA expression level of Bcl2 was increased (DBS vs. KA group: 0.92 ± 0.21 vs. 0.48 ± 0.16, P = 0.0004). The protein expression levels of CASP3 (DBS vs. KA group: 1.25 ± 0.26 vs. 2.49 ± 0.38, P < 0.0001) and BAX (DBS vs. KA group: 1.57 ± 0.49 vs. 2.80 ± 0.63, P = 0.0012) both declined in the DBS group whereas the protein expression level of BCL2 (DBS vs. KA group: 0.78 ± 0.32 vs. 0.36 ± 0.17, P = 0.0086) increased in the DBS group. CONCLUSIONS: This study demonstrated that chronic ANT stimulation could exert a neuroprotective effect on hippocampal neurons. This neuroprotective effect is likely to be mediated by the inhibition of apoptosis in the epileptic hippocampus. Medknow Publications & Media Pvt Ltd 2016-04-20 /pmc/articles/PMC4831532/ /pubmed/27064042 http://dx.doi.org/10.4103/0366-6999.179799 Text en Copyright: © 2016 Chinese Medical Journal http://creativecommons.org/licenses/by-nc-sa/3.0 This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.
spellingShingle Original Article
Meng, Da-Wei
Liu, Huan-Guang
Yang, An-Chao
Zhang, Kai
Zhang, Jian-Guo
Stimulation of Anterior Thalamic Nuclei Protects Against Seizures and Neuronal Apoptosis in Hippocampal CA3 Region of Kainic Acid-induced Epileptic Rats
title Stimulation of Anterior Thalamic Nuclei Protects Against Seizures and Neuronal Apoptosis in Hippocampal CA3 Region of Kainic Acid-induced Epileptic Rats
title_full Stimulation of Anterior Thalamic Nuclei Protects Against Seizures and Neuronal Apoptosis in Hippocampal CA3 Region of Kainic Acid-induced Epileptic Rats
title_fullStr Stimulation of Anterior Thalamic Nuclei Protects Against Seizures and Neuronal Apoptosis in Hippocampal CA3 Region of Kainic Acid-induced Epileptic Rats
title_full_unstemmed Stimulation of Anterior Thalamic Nuclei Protects Against Seizures and Neuronal Apoptosis in Hippocampal CA3 Region of Kainic Acid-induced Epileptic Rats
title_short Stimulation of Anterior Thalamic Nuclei Protects Against Seizures and Neuronal Apoptosis in Hippocampal CA3 Region of Kainic Acid-induced Epileptic Rats
title_sort stimulation of anterior thalamic nuclei protects against seizures and neuronal apoptosis in hippocampal ca3 region of kainic acid-induced epileptic rats
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4831532/
https://www.ncbi.nlm.nih.gov/pubmed/27064042
http://dx.doi.org/10.4103/0366-6999.179799
work_keys_str_mv AT mengdawei stimulationofanteriorthalamicnucleiprotectsagainstseizuresandneuronalapoptosisinhippocampalca3regionofkainicacidinducedepilepticrats
AT liuhuanguang stimulationofanteriorthalamicnucleiprotectsagainstseizuresandneuronalapoptosisinhippocampalca3regionofkainicacidinducedepilepticrats
AT yanganchao stimulationofanteriorthalamicnucleiprotectsagainstseizuresandneuronalapoptosisinhippocampalca3regionofkainicacidinducedepilepticrats
AT zhangkai stimulationofanteriorthalamicnucleiprotectsagainstseizuresandneuronalapoptosisinhippocampalca3regionofkainicacidinducedepilepticrats
AT zhangjianguo stimulationofanteriorthalamicnucleiprotectsagainstseizuresandneuronalapoptosisinhippocampalca3regionofkainicacidinducedepilepticrats