Cargando…
Morphine Modulates Adult Neurogenesis and Contextual Memory by Impeding the Maturation of Neural Progenitors
The regulation of adult neurogenesis by opiates has been implicated in modulating different addiction cycles. At which neurogenesis stage opiates exert their action remains unresolved. We attempt to define the temporal window of morphine’s inhibition effect on adult neurogenesis by using the POMC-EG...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4831694/ https://www.ncbi.nlm.nih.gov/pubmed/27078155 http://dx.doi.org/10.1371/journal.pone.0153628 |
_version_ | 1782427117327220736 |
---|---|
author | Zhang, Yue Xu, Chi Zheng, Hui Loh, Horace H. Law, Ping-Yee |
author_facet | Zhang, Yue Xu, Chi Zheng, Hui Loh, Horace H. Law, Ping-Yee |
author_sort | Zhang, Yue |
collection | PubMed |
description | The regulation of adult neurogenesis by opiates has been implicated in modulating different addiction cycles. At which neurogenesis stage opiates exert their action remains unresolved. We attempt to define the temporal window of morphine’s inhibition effect on adult neurogenesis by using the POMC-EGFP mouse model, in which newborn granular cells (GCs) can be visualized between days 3–28 post-mitotic. The POMC-EGFP mice were trained under the 3-chambers conditioned place preference (CPP) paradigm with either saline or morphine. We observed after 4 days of CPP training with saline, the number of EGFP-labeled newborn GCs in sub-granular zone (SGZ) hippocampus significantly increased compared to mice injected with saline in their homecage. CPP training with morphine significantly decreased the number of EGFP-labeled GCs, whereas no significant difference in the number of EGFP-labeled GCs was observed with the homecage mice injected with the same dose of morphine. Using cell-type selective markers, we observed that morphine reduced the number of late stage progenitors and immature neurons such as Doublecortin (DCX) and βIII Tubulin (TuJ1) positive cells in the SGZ but did not reduce the number of early progenitors such as Nestin, SOX2, or neurogenic differentiation-1 (NeuroD1) positive cells. Analysis of co-localization between different cell markers shows that morphine reduced the number of adult-born GCs by interfering with differentiation of early progenitors, but not by inducing apoptosis. In addition, when NeuroD1 was over-expressed in DG by stereotaxic injection of lentivirus, it rescued the loss of immature neurons and prolonged the extinction of morphine-trained CPP. These results suggest that under the condition of CPP training paradigm, morphine affects the transition of neural progenitor/stem cells to immature neurons via a mechanism involving NeuroD1. |
format | Online Article Text |
id | pubmed-4831694 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-48316942016-04-22 Morphine Modulates Adult Neurogenesis and Contextual Memory by Impeding the Maturation of Neural Progenitors Zhang, Yue Xu, Chi Zheng, Hui Loh, Horace H. Law, Ping-Yee PLoS One Research Article The regulation of adult neurogenesis by opiates has been implicated in modulating different addiction cycles. At which neurogenesis stage opiates exert their action remains unresolved. We attempt to define the temporal window of morphine’s inhibition effect on adult neurogenesis by using the POMC-EGFP mouse model, in which newborn granular cells (GCs) can be visualized between days 3–28 post-mitotic. The POMC-EGFP mice were trained under the 3-chambers conditioned place preference (CPP) paradigm with either saline or morphine. We observed after 4 days of CPP training with saline, the number of EGFP-labeled newborn GCs in sub-granular zone (SGZ) hippocampus significantly increased compared to mice injected with saline in their homecage. CPP training with morphine significantly decreased the number of EGFP-labeled GCs, whereas no significant difference in the number of EGFP-labeled GCs was observed with the homecage mice injected with the same dose of morphine. Using cell-type selective markers, we observed that morphine reduced the number of late stage progenitors and immature neurons such as Doublecortin (DCX) and βIII Tubulin (TuJ1) positive cells in the SGZ but did not reduce the number of early progenitors such as Nestin, SOX2, or neurogenic differentiation-1 (NeuroD1) positive cells. Analysis of co-localization between different cell markers shows that morphine reduced the number of adult-born GCs by interfering with differentiation of early progenitors, but not by inducing apoptosis. In addition, when NeuroD1 was over-expressed in DG by stereotaxic injection of lentivirus, it rescued the loss of immature neurons and prolonged the extinction of morphine-trained CPP. These results suggest that under the condition of CPP training paradigm, morphine affects the transition of neural progenitor/stem cells to immature neurons via a mechanism involving NeuroD1. Public Library of Science 2016-04-14 /pmc/articles/PMC4831694/ /pubmed/27078155 http://dx.doi.org/10.1371/journal.pone.0153628 Text en © 2016 Zhang et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Zhang, Yue Xu, Chi Zheng, Hui Loh, Horace H. Law, Ping-Yee Morphine Modulates Adult Neurogenesis and Contextual Memory by Impeding the Maturation of Neural Progenitors |
title | Morphine Modulates Adult Neurogenesis and Contextual Memory by Impeding the Maturation of Neural Progenitors |
title_full | Morphine Modulates Adult Neurogenesis and Contextual Memory by Impeding the Maturation of Neural Progenitors |
title_fullStr | Morphine Modulates Adult Neurogenesis and Contextual Memory by Impeding the Maturation of Neural Progenitors |
title_full_unstemmed | Morphine Modulates Adult Neurogenesis and Contextual Memory by Impeding the Maturation of Neural Progenitors |
title_short | Morphine Modulates Adult Neurogenesis and Contextual Memory by Impeding the Maturation of Neural Progenitors |
title_sort | morphine modulates adult neurogenesis and contextual memory by impeding the maturation of neural progenitors |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4831694/ https://www.ncbi.nlm.nih.gov/pubmed/27078155 http://dx.doi.org/10.1371/journal.pone.0153628 |
work_keys_str_mv | AT zhangyue morphinemodulatesadultneurogenesisandcontextualmemorybyimpedingthematurationofneuralprogenitors AT xuchi morphinemodulatesadultneurogenesisandcontextualmemorybyimpedingthematurationofneuralprogenitors AT zhenghui morphinemodulatesadultneurogenesisandcontextualmemorybyimpedingthematurationofneuralprogenitors AT lohhoraceh morphinemodulatesadultneurogenesisandcontextualmemorybyimpedingthematurationofneuralprogenitors AT lawpingyee morphinemodulatesadultneurogenesisandcontextualmemorybyimpedingthematurationofneuralprogenitors |