Cargando…
Extraction of chemical-induced diseases using prior knowledge and textual information
We describe our approach to the chemical–disease relation (CDR) task in the BioCreative V challenge. The CDR task consists of two subtasks: automatic disease-named entity recognition and normalization (DNER), and extraction of chemical-induced diseases (CIDs) from Medline abstracts. For the DNER sub...
Autores principales: | Pons, Ewoud, Becker, Benedikt F.H., Akhondi, Saber A., Afzal, Zubair, van Mulligen, Erik M., Kors, Jan A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4831722/ https://www.ncbi.nlm.nih.gov/pubmed/27081155 http://dx.doi.org/10.1093/database/baw046 |
Ejemplares similares
-
Chemical entity recognition in patents by combining dictionary-based and statistical approaches
por: Akhondi, Saber A., et al.
Publicado: (2016) -
Knowledge-based extraction of adverse drug events from biomedical text
por: Kang, Ning, et al.
Publicado: (2014) -
Recognition of chemical entities: combining dictionary-based and grammar-based approaches
por: Akhondi, Saber A, et al.
Publicado: (2015) -
Alignment of vaccine codes using an ontology of vaccine descriptions
por: Becker, Benedikt FH, et al.
Publicado: (2022) -
A multilingual gold-standard corpus for biomedical concept recognition: the Mantra GSC
por: Kors, Jan A, et al.
Publicado: (2015)