Cargando…
Exploiting syntactic and semantics information for chemical–disease relation extraction
Identifying chemical–disease relations (CDR) from biomedical literature could improve chemical safety and toxicity studies. This article proposes a novel syntactic and semantic information exploitation method for CDR extraction. The proposed method consists of a feature-based model, a tree kernel-ba...
Autores principales: | Zhou, Huiwei, Deng, Huijie, Chen, Long, Yang, Yunlong, Jia, Chen, Huang, Degen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4831723/ https://www.ncbi.nlm.nih.gov/pubmed/27081156 http://dx.doi.org/10.1093/database/baw048 |
Ejemplares similares
-
Temporal Relation Extraction with Joint Semantic and Syntactic Attention
por: Jin, Panpan, et al.
Publicado: (2022) -
Conserving Semantic Unit Information and Simplifying Syntactic Constituents to Improve Implicit Discourse Relation Recognition
por: Fang, Zhongyang, et al.
Publicado: (2023) -
Syntactic and Semantic Bias Detection and Countermeasures
por: Englert, Roman, et al.
Publicado: (2020) -
Rapid infant learning of syntactic–semantic links
por: Barbir, Monica, et al.
Publicado: (2022) -
Hedge Scope Detection in Biomedical Texts: An Effective Dependency-Based Method
por: Zhou, Huiwei, et al.
Publicado: (2015)