Cargando…
Non-targeted UHPLC-MS metabolomic data processing methods: a comparative investigation of normalisation, missing value imputation, transformation and scaling
INTRODUCTION: The generic metabolomics data processing workflow is constructed with a serial set of processes including peak picking, quality assurance, normalisation, missing value imputation, transformation and scaling. The combination of these processes should present the experimental data in an...
Autores principales: | Di Guida, Riccardo, Engel, Jasper, Allwood, J. William, Weber, Ralf J. M., Jones, Martin R., Sommer, Ulf, Viant, Mark R., Dunn, Warwick B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4831991/ https://www.ncbi.nlm.nih.gov/pubmed/27123000 http://dx.doi.org/10.1007/s11306-016-1030-9 |
Ejemplares similares
-
Training needs in metabolomics
por: Weber, Ralf J. M., et al.
Publicado: (2015) -
MUSCLE: automated multi-objective evolutionary optimization of targeted LC-MS/MS analysis
por: Bradbury, James, et al.
Publicado: (2015) -
A Workflow for Missing Values Imputation of Untargeted Metabolomics Data
por: Faquih, Tariq, et al.
Publicado: (2020) -
Normalization and missing value imputation for label-free LC-MS analysis
por: Karpievitch, Yuliya V, et al.
Publicado: (2012) -
CASMI—The Small Molecule Identification Process from a Birmingham Perspective
por: Allwood, J. William, et al.
Publicado: (2013)